搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SQUID法和Campbell法测量超导材料的研究

郭志超 索红莉 刘志勇 刘敏 马麟

引用本文:
Citation:

SQUID法和Campbell法测量超导材料的研究

郭志超, 索红莉, 刘志勇, 刘敏, 马麟

Study on SQUID method and Campbell method measure superconductors

Guo Zhi-Chao, Suo Hong-Li, Liu Zhi-Yong, Liu Min, Ma Lin
PDF
导出引用
  • 本文对比研究了超导材料磁测量中的SQUID法和Campbell法; 并用高压PIT法制备的超导材料MgB2作为测量样品,用两种方法,测量了超导样品的临界电流密度, 分别得到了样品的Jc-B关系曲线; SQUID法测量样品的外磁场可以达到6 T, 此时材料已经处于失超状态,此方法测得的结果是样品各个小区域结果的平均值, SQUID还可以用来进一步标度材料的钉扎力行为,研究材料磁特性. Campbell法测量只能测量到外磁场强度为0.4 T,外磁场的交流部分的频率可以达到800 Hz, 用这种测量方法得到的是整块样品的电流,由于测量计及材料内部微观结构缺陷等影响电流传输因素, 所测结果小于直流磁化法,但更切近材料实际电流,能用来深入研究材料内部结构差别对材料电性能的影响.
    The two magnetic measurement methods of superconductors, SQUID method and Campbell method, are introduced briefly. Superconducting properties of MgB2 bulk samples are prepared by the high-pressure powder in tube (PIT) sintering method. The two measurement methods are employed to measure the critical current density of the sample. The Jc-B curves of the MgB2 samples are obtained with each method. The SQUID method can be used to measure the magnetic strength field up to 6 T and the material is in normal state, and the result is used to scale F(b) of the pinning through necessary calculation which is used to study the magnetic characteristic of the material. The critical current density (Jc) measured by the SQUID method is the average of the materials different parts. Jc is measured and estimated by the Campbell's method. The magnetic field is only to 0.4 T while the frequency of the AC parts magnetic field is varied from 37 Hz to 797 Hz. The critical current density obtained by Campbell's method is smaller than that obtained by the SQUID measurement, which is due to the existence of various faults and the decrease of the electrical connectivity.
    • 基金项目: 国家重点基础研究发展计划(973计划) (批准号: 2006CB601005); 国家高技术研究发展计划(863)项目(批准号: 2009AA032401); 国家自然科学基金(批准号: 50771003和50802004) 和北京市自然科学基金(批准号: 2092006)资助的课题.
    • Funds: Project supported by the National Basic Research Program 973 of China (Grant No. 2006CB601005), the National High Technology Research and Development Program 863 of China (Grant No. 2009AA032401), the National Natural Science Foundation of China (Grant Nos. 50771003 and 50802004), and the Beijing Municipal Natural Science Foundation (Grant No. 2092006).
    [1]

    Gumbel A, Eckert J, Fucks G 2002 Appl. Phys. Lett. 80 2725

    [2]

    Kosse A I, Prokhorov A Y, Khokhlov V A 2008 Supercond. Sci. Technol. 21 075015

    [3]

    Teruo M 2007 Flux pinning in superconductors (Berlin: Springer-Verlag) p221

    [4]

    Gallitto A A, Bonsignore G, Giunchi G, Vigni M L 2007 J. Supercond. Nov. Magn. 20 13

    [5]

    Zheng D N, Campbell A M, Johnson J D, Cooper J R, Blunt F J 1994 Phys. Rev. B 49 1417

    [6]

    Ni B, Liu Z Y, Yoshihiro M 2008 Phys. C 468 1443

    [7]

    Huan Y, Luo H Q, Wang Z S 2008 Appl. Phys. Lett. 93 142506

    [8]

    Campbell A M 1969 Phys. C: Solid State Phys. 2 1492

    [9]

    Bean C P 1962 Phys. Rev. Lett. 8 250

    [10]

    Lodon H 1963 Phys. Lett. 6 162

    [11]

    Yasukoch K, Ogasawara T, Ushino N 1964 Phys. Soc. Jpn. 19 1649

    [12]

    Jin H L, Jin X, Fang H C 1992 Chin. J. Low Temp. Phys. 14 12 (in Chinese) [吉和林, 金新, 范宏昌 1992 低温 14 12]

    [13]

    Otabe E S, Ohtani N, Matsushita T, Ishikawa Y, Yoshizawa S 1994 Jpn. J. Appl. Phys. 33 996

    [14]

    Wang R F, Zhao S P, Xu F Z 2002 Acta Phys. Sin. 51 889 (in Chinese) [王瑞峰, 赵士平, 徐凤枝 2002 51 889]

    [15]

    Kimishima Y, Takami S, Okuda T 2007 Phys. C 463 281

    [16]

    Kulich M, Kovac P, Weber H W 2011 Supercond. Sci. Technol. 24 065025

    [17]

    He L, Hu X, Yin L 2009 Acta Phys. Sin. 58 417 (in Chinese) [贺丽, 胡翔, 尹澜 2009 58 417]

    [18]

    Chu H F, Li J, Li S 2010 Acta Phys. Sin. 59 6585 (in Chinese) [储海峰, 李洁, 李绍, 黎松林 2010 59 6585]

  • [1]

    Gumbel A, Eckert J, Fucks G 2002 Appl. Phys. Lett. 80 2725

    [2]

    Kosse A I, Prokhorov A Y, Khokhlov V A 2008 Supercond. Sci. Technol. 21 075015

    [3]

    Teruo M 2007 Flux pinning in superconductors (Berlin: Springer-Verlag) p221

    [4]

    Gallitto A A, Bonsignore G, Giunchi G, Vigni M L 2007 J. Supercond. Nov. Magn. 20 13

    [5]

    Zheng D N, Campbell A M, Johnson J D, Cooper J R, Blunt F J 1994 Phys. Rev. B 49 1417

    [6]

    Ni B, Liu Z Y, Yoshihiro M 2008 Phys. C 468 1443

    [7]

    Huan Y, Luo H Q, Wang Z S 2008 Appl. Phys. Lett. 93 142506

    [8]

    Campbell A M 1969 Phys. C: Solid State Phys. 2 1492

    [9]

    Bean C P 1962 Phys. Rev. Lett. 8 250

    [10]

    Lodon H 1963 Phys. Lett. 6 162

    [11]

    Yasukoch K, Ogasawara T, Ushino N 1964 Phys. Soc. Jpn. 19 1649

    [12]

    Jin H L, Jin X, Fang H C 1992 Chin. J. Low Temp. Phys. 14 12 (in Chinese) [吉和林, 金新, 范宏昌 1992 低温 14 12]

    [13]

    Otabe E S, Ohtani N, Matsushita T, Ishikawa Y, Yoshizawa S 1994 Jpn. J. Appl. Phys. 33 996

    [14]

    Wang R F, Zhao S P, Xu F Z 2002 Acta Phys. Sin. 51 889 (in Chinese) [王瑞峰, 赵士平, 徐凤枝 2002 51 889]

    [15]

    Kimishima Y, Takami S, Okuda T 2007 Phys. C 463 281

    [16]

    Kulich M, Kovac P, Weber H W 2011 Supercond. Sci. Technol. 24 065025

    [17]

    He L, Hu X, Yin L 2009 Acta Phys. Sin. 58 417 (in Chinese) [贺丽, 胡翔, 尹澜 2009 58 417]

    [18]

    Chu H F, Li J, Li S 2010 Acta Phys. Sin. 59 6585 (in Chinese) [储海峰, 李洁, 李绍, 黎松林 2010 59 6585]

  • [1] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响.  , 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [2] 张雨阳, 冷永刚, 谭丹, 刘进军, 范胜波. 基于磁化电流法的双稳压电悬臂梁磁力精确分析.  , 2017, 66(22): 220502. doi: 10.7498/aps.66.220502
    [3] 谭丹, 冷永刚, 范胜波, 高毓璣. 外加磁场压电悬臂梁能量采集系统的磁化电流法磁力研究.  , 2015, 64(6): 060502. doi: 10.7498/aps.64.060502
    [4] 郭志超, 李平林. 晶粒细化对MgB2超导临界电流密度的作用.  , 2014, 63(6): 067401. doi: 10.7498/aps.63.067401
    [5] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率.  , 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [6] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度.  , 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [7] 王炜, 张琪昌, 王雪娇. 待定固有频率法在分析系统混沌临界值问题中的应用.  , 2009, 58(8): 5162-5168. doi: 10.7498/aps.58.5162
    [8] 王淑芳, 朱亚斌, 张 芹, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 利用电泳法在金属基底上制备MgB2超导厚膜.  , 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [9] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜.  , 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [10] 李宏成, 王瑞兰, 魏斌. 介质谐振器法测量高温超导薄膜微波表面电阻的误差分析.  , 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [11] 韩 冰, 陈赓华, 徐凤枝, 赵士平, 杨乾声. 高温超导台阶结YBCO dc-SQUID一阶平面梯度计.  , 2000, 49(10): 2051-2054. doi: 10.7498/aps.49.2051
    [12] 冯 勇, 周 廉, 杨万民, 张翠萍, 汪京荣, 于泽铭, 吴晓祖. PMP法YGdBaCuO超导体的磁通钉扎研究.  , 2000, 49(1): 146-152. doi: 10.7498/aps.49.146
    [13] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析.  , 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
    [14] 刘长清, 金柱京, 李美栓, 呼和吉夫, 吴维?. 悬臂梁弯曲法研究氮化钛薄膜临界开裂行为与损毁机理.  , 1992, 41(7): 1137-1142. doi: 10.7498/aps.41.1137
    [15] 吴文豪, 韩大星. 用红外光激励电流法研究非晶半导体带隙态分布.  , 1988, 37(6): 916-923. doi: 10.7498/aps.37.916
    [16] 丁世英, 余正, 史可信, 颜家烈. 多层PbBi-SiO膜的超导临界电流特性.  , 1987, 36(12): 1640-1642. doi: 10.7498/aps.36.1640
    [17] 张裕恒, 李玉芝, 郑捷飞. 在一个磁通量子内dc Josephson电流的阶梯效应(Ⅰ)——双结SQUID.  , 1984, 33(1): 58-68. doi: 10.7498/aps.33.58
    [18] 吴杭生, 顾一鸣. 理想第二类超导薄膜的纵场临界电流.  , 1983, 32(5): 607-617. doi: 10.7498/aps.32.607
    [19] 超导材料组. 较低温扩散法Nb3Sn带绕制成十万高斯超导磁体.  , 1975, 24(6): 452-453. doi: 10.7498/aps.24.452
    [20] 吴杭生. 载有电流的超导膜的能隙和临界电流.  , 1966, 22(7): 765-769. doi: 10.7498/aps.22.765
计量
  • 文章访问数:  7319
  • PDF下载量:  372
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-28
  • 修回日期:  2012-01-20
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map