搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钠原子主线系精细结构的多体微扰计算

陈笋 朱云霞 葛自明 贺黎明

引用本文:
Citation:

钠原子主线系精细结构的多体微扰计算

陈笋, 朱云霞, 葛自明, 贺黎明

MBPT calculation for the fine-structure intervals of principal series np(n=39) for Na

Chen Sun, Zhu Yun-Xia, Ge Zi-Ming, He Li-Ming
PDF
导出引用
  • 在相对论的框架下采用多体微扰理论(MBPT)方法计算了纳原子 np(n=39)态的能级精细结构分裂值. 为避免多体微扰计算中需要计算大量连续态的困扰, 通过引入外势的方法可以构建离散、有限和近似完备的数值基函数. 经求解相对论Hartree-Fock (RHF)方程及外势作用下的RHF方程可获得零级近似波函数和能级值. 为了使微扰展开能够收敛, 计算中用到了轨道角量子数l 6的在一定能量分布范围内的中间态, 其中以在外势作用下的收缩态为主. 依此方法计算了纳原子主线系系列能级二阶微扰修正值, 同时还考虑了Breit效应的一级微扰修正对精细结构的影响. 通过与其他理论计算结果比较可看出, 本文计算结果在较大程度上更接近于实验值.
    The fine-structure intervals of Na principal series np(n=39) are calculated by the many-body perturbation theory (MBPT) within the framework of relativity. To deal with the problem that a large set of continuum states is required in the MBPT calculation, an exponential potential is employed to generate a discrete, finite and nearly complete set of numerical basis functions. The zeroth-order wavefunctions and eignvalues are obtained by solving the relativistic Hartree-Fock (RHF) equation and the RHF equation with the action of a potential barrier. The basis set used in this work contains intermediate orbitals with the angular momentum l 6 and in an appropriate energy range, and most of them are the so called contracted orbitals. Encouraging results are obtained using this technique to calculate the second-order correlation corrections, combining the Breit effects in a first-order perturbation approach. Compared with other theoretical calculations, the present results are much close to the experimental results.
    [1]

    Banerjee A, Natarajan V 2004 Phys. Rev. A: At. Mol. Opt. Phys. 70 052505

    [2]

    Liu L, Li J M 1988 Acta Phys. Sin. 37 2053 (in Chinese) [刘磊, 李家明 1988 37 2053]

    [3]

    Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese) [颜君, 张培鸿, 仝晓明, 李家明 1996 45 1978]

    [4]

    Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334

    [5]

    Gupta G P, Msezane A Z 2011 Phys. Scr. 83 055301

    [6]

    Gupta G P, Msezane A Z 2010 Phys. Scr. 81 045302

    [7]

    Zatsarinny O, Froese Fischer C 2009 Comput. Phys. Commun. 180 2041

    [8]

    Godefroid M R, Van Meulebeke G, Jönsson P, Froese Fischer C 1997 Z. Phys. D 42 193

    [9]

    Wang X L, Liu L T, Gao X, Shen C, Li J M 2008 Chin. Phys. Lett. 25 4244

    [10]

    Li P C, Dong C Z, Zhou X X, Jie L Y, Ding X B 2003 J. Al. Mol. Phys. 20 467 (in Chinese) [李鹏程, 董晨钟, 周效信, 颉录有, 丁晓彬 2003 原子与分子 20 467]

    [11]

    Sternheimer R M, Rodgers J E, Lee T, Das T P 1976 Phys. Rev. A: At. Mol. Opt. Phys. 14 1595

    [12]

    Holmgren L, Lindgren I, Morrison J, Martensson A M 1976 Z. Physik. A 276 179

    [13]

    Chen C, Han X Y, Li J M 2005 Phys. Rev. A: At. Mol. Opt. Phys. 71 042503

    [14]

    He L M, Zhu Y X, Zhang M, Tu Y Q 2011 J. Phys. B: At. Mol. Opt. Phys. 44 225007

    [15]

    Dzuba V A, Flambaum V V, Sushkov O P 1983 J. Phys. B: At. Mol. Phys. 16 715

    [16]

    Johnson W R 2007 Atomic Structrue Theory (Berlin: Springer-Verlag) p203-209, p197-198

    [17]

    He Y L, Zhou X X, Li X Y 2008 Acta Phys. Sin. 57 116 (in Chinese) [何永林, 周效信, 李小勇 2008 57 116]

    [18]

    Kang S, Liu Q, Zhang Z X, Zhang X Z, Shi T Y 2006 Acta Phys. Sin. 55 3380 (in Chinese) [康帅, 刘强, 钟振祥, 张现周, 史庭云 2006 55 3380]

    [19]

    He L M, Cao W, Chen X Q, Zhu Y X 2005 Acta Phys. Sin. 54 5077 (in Chinese) [贺黎明, 曹伟, 陈学谦, 朱云霞 2005 54 5077]

    [20]

    Younger S M 1980 Phys. Rev. A: At. Mol. Opt. Phys. 21 1364

    [21]

    Kim Y K 1967 Phys. Rev. 154 17

    [22]

    Froese Fischer C 1977 The Hartree-Fock Method for Atoms: a numerical approach (New York: A Wiley-Interscience Publication) p221-273

    [23]

    Lindgren I, Morrison J 1982 Atomic Many-Body Theory (Berlin: Springer-Verlag)p236

    [24]

    Johnson W R, Idrees M, Sapirstein J 1987 Phys. Rev. A: At. Mol. Opt. Phys. 35 3218

    [25]

    Grant I P, Pyper N C 1976 J. Phys. B: At. Mol. Phys. 9 761

    [26]

    Moore C E 1949 Atomic Energy Levels (Vol. I) Natl. Bur. Stds. Circ. No. 467 (Washington, D. C.: U.S. GPO) p89-90

    [27]

    Martin W C, Zalubas R 1981 J. Phys. Chem. Ref. Data 10 153

    [28]

    Froese Fischer C 1972 Comput. Phys. Commun. 4 107

    [29]

    Sternheimer R M, Peierls R F 1971 Phys. Rev. A: At. Mol. Opt. Phys. 3 837

  • [1]

    Banerjee A, Natarajan V 2004 Phys. Rev. A: At. Mol. Opt. Phys. 70 052505

    [2]

    Liu L, Li J M 1988 Acta Phys. Sin. 37 2053 (in Chinese) [刘磊, 李家明 1988 37 2053]

    [3]

    Yan J, Zhang P H, Tong X M, Li J M 1996 Acta Phys. Sin. 45 1978 (in Chinese) [颜君, 张培鸿, 仝晓明, 李家明 1996 45 1978]

    [4]

    Xia D, Li J M 2001 Chin. Phys. Lett. 18 1334

    [5]

    Gupta G P, Msezane A Z 2011 Phys. Scr. 83 055301

    [6]

    Gupta G P, Msezane A Z 2010 Phys. Scr. 81 045302

    [7]

    Zatsarinny O, Froese Fischer C 2009 Comput. Phys. Commun. 180 2041

    [8]

    Godefroid M R, Van Meulebeke G, Jönsson P, Froese Fischer C 1997 Z. Phys. D 42 193

    [9]

    Wang X L, Liu L T, Gao X, Shen C, Li J M 2008 Chin. Phys. Lett. 25 4244

    [10]

    Li P C, Dong C Z, Zhou X X, Jie L Y, Ding X B 2003 J. Al. Mol. Phys. 20 467 (in Chinese) [李鹏程, 董晨钟, 周效信, 颉录有, 丁晓彬 2003 原子与分子 20 467]

    [11]

    Sternheimer R M, Rodgers J E, Lee T, Das T P 1976 Phys. Rev. A: At. Mol. Opt. Phys. 14 1595

    [12]

    Holmgren L, Lindgren I, Morrison J, Martensson A M 1976 Z. Physik. A 276 179

    [13]

    Chen C, Han X Y, Li J M 2005 Phys. Rev. A: At. Mol. Opt. Phys. 71 042503

    [14]

    He L M, Zhu Y X, Zhang M, Tu Y Q 2011 J. Phys. B: At. Mol. Opt. Phys. 44 225007

    [15]

    Dzuba V A, Flambaum V V, Sushkov O P 1983 J. Phys. B: At. Mol. Phys. 16 715

    [16]

    Johnson W R 2007 Atomic Structrue Theory (Berlin: Springer-Verlag) p203-209, p197-198

    [17]

    He Y L, Zhou X X, Li X Y 2008 Acta Phys. Sin. 57 116 (in Chinese) [何永林, 周效信, 李小勇 2008 57 116]

    [18]

    Kang S, Liu Q, Zhang Z X, Zhang X Z, Shi T Y 2006 Acta Phys. Sin. 55 3380 (in Chinese) [康帅, 刘强, 钟振祥, 张现周, 史庭云 2006 55 3380]

    [19]

    He L M, Cao W, Chen X Q, Zhu Y X 2005 Acta Phys. Sin. 54 5077 (in Chinese) [贺黎明, 曹伟, 陈学谦, 朱云霞 2005 54 5077]

    [20]

    Younger S M 1980 Phys. Rev. A: At. Mol. Opt. Phys. 21 1364

    [21]

    Kim Y K 1967 Phys. Rev. 154 17

    [22]

    Froese Fischer C 1977 The Hartree-Fock Method for Atoms: a numerical approach (New York: A Wiley-Interscience Publication) p221-273

    [23]

    Lindgren I, Morrison J 1982 Atomic Many-Body Theory (Berlin: Springer-Verlag)p236

    [24]

    Johnson W R, Idrees M, Sapirstein J 1987 Phys. Rev. A: At. Mol. Opt. Phys. 35 3218

    [25]

    Grant I P, Pyper N C 1976 J. Phys. B: At. Mol. Phys. 9 761

    [26]

    Moore C E 1949 Atomic Energy Levels (Vol. I) Natl. Bur. Stds. Circ. No. 467 (Washington, D. C.: U.S. GPO) p89-90

    [27]

    Martin W C, Zalubas R 1981 J. Phys. Chem. Ref. Data 10 153

    [28]

    Froese Fischer C 1972 Comput. Phys. Commun. 4 107

    [29]

    Sternheimer R M, Peierls R F 1971 Phys. Rev. A: At. Mol. Opt. Phys. 3 837

  • [1] 钟振祥. 氢分子离子超精细结构理论综述.  , 2024, 73(20): 203104. doi: 10.7498/aps.73.20241101
    [2] 计晨. 原子兰姆位移与超精细结构中的核结构效应.  , 2024, 73(20): 202101. doi: 10.7498/aps.73.20241063
    [3] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法.  , 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [4] 陈展斌, 董晨钟. 超精细结构效应对辐射光谱圆极化特性的影响.  , 2018, 67(19): 193401. doi: 10.7498/aps.67.20180322
    [5] 钱新宇, 孙言, 刘冬冬, 胡峰, 樊秋波, 苟秉聪. 硼原(离)子内壳激发高自旋态能级和辐射跃迁.  , 2017, 66(12): 123101. doi: 10.7498/aps.66.123101
    [6] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量.  , 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [7] 谭晓明, 赵刚, 张迪. BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响.  , 2016, 65(10): 107501. doi: 10.7498/aps.65.107501
    [8] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量.  , 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [9] 王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富. 激光冲击波压缩稠密铝辐射不透明度实验研究.  , 2013, 62(12): 125202. doi: 10.7498/aps.62.125202
    [10] 李晓莉, 张连水, 孙江, 冯晓敏. 微波驱动精细结构能级跃迁引起的电磁诱导负折射效应.  , 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [11] 孙言, 苟秉聪, 朱婧晶. Li“洞原子”高位三激发态2 S(m)和2 D(m) (m=2—7)的能级、精细结构和Auger宽度.  , 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [12] 马怡培, 贺黎明, 张孟, 朱云霞. 钠原子nd高Rydberg系列能级精细结构的计算研究.  , 2009, 58(11): 7621-7626. doi: 10.7498/aps.58.7621
    [13] 吕海萍, 殷春浩, 魏雪松, 钮应喜, 宋 宁, 茹瑞鹏. LiNbO3∶Fe3+晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应.  , 2007, 56(11): 6608-6615. doi: 10.7498/aps.56.6608
    [14] 殷春浩, 焦 杨, 张 雷, 宋 宁, 茹瑞鹏, 杨 柳. CsNiCl3晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应.  , 2006, 55(11): 6047-6054. doi: 10.7498/aps.55.6047
    [15] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究.  , 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [16] 葛自明, 吕志伟, 王治文, 周雅君. 类锂体系激发态1s2 nd(n=3,4,5)精细结构和项能的理论计算.  , 2002, 51(12): 2733-2739. doi: 10.7498/aps.51.2733
    [17] 王菲, 芶秉聪, 韩利. 锂内壳高激发2smd4De,2pnd4Do系列的能量和辐射跃迁.  , 2001, 50(9): 1685-1688. doi: 10.7498/aps.50.1685
    [18] 韩利红, 芶秉聪, 王菲. 类铍BⅡ离子激发态的相对论能量和精细结构.  , 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
    [19] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究.  , 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
    [20] 颜君, 张培鸿, 仝晓民, 李家明. 碱金属nf里德伯态精细结构反常物理机制的理论研究.  , 1996, 45(12): 1978-1985. doi: 10.7498/aps.45.1978
计量
  • 文章访问数:  8181
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-27
  • 修回日期:  2011-12-11
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map