搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究

何博 何浩波 丰松江 聂万胜

引用本文:
Citation:

液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究

何博, 何浩波, 丰松江, 聂万胜

Model and simulation of liquid rocket organic gel spray droplet evaporation

He Bo, He Hao-Bo, Feng Song-Jiang, Nie Wan-Sheng
PDF
导出引用
  • 凝胶推进剂虽然兼具有液体推进剂流量可控和固体推进剂长期可储存等优点, 但凝胶喷雾液滴蒸发燃烧问题却一直困扰着凝胶推进剂研制及燃烧室设计工作, 阻碍了凝胶推进剂实际工程应用.设计实现了凝胶单液滴蒸发燃烧实验系统, 通过某型有机凝胶偏二甲肼(UDMH)单液滴在四氧化二氮蒸气中的蒸发燃烧实验现象, 进一步深入分析了凝胶液滴蒸发燃烧机理.根据实验中凝胶单液滴在不同阶段的蒸发特性, 建立了有机凝胶喷雾液滴在胶凝剂膜形成、膨胀、破裂三个不同蒸发阶段的多组分蒸发模型, 采用初步选定的模型参数及物性参数对凝胶单液滴在高温气体环境中的蒸发全过程进行了仿真计算, 并与常规液体液滴的仿真结果进行了对比分析.结果表明,凝胶喷雾液滴表面胶凝剂含量在蒸发初期增加比较缓慢, 但在某临界时刻后的极短时间内迅速升高至形成胶凝剂膜的质量分数95%, 导致表面质量流率迅速下降至0,表面温度则快速上升至UDMH推进剂沸点.胶凝剂膜形成后, 液滴半径及表面UDMH蒸气质量分数出现了实验现象中凝胶液滴反复膨胀-破裂的震荡现象, 液滴表面温度维持在略高于沸点的某温度范围内,凝胶液滴内部的沸腾蒸发明显强于液体液滴表面稳态蒸发流率, 使得凝胶喷雾液滴生存时间小于常规液体液滴.
    Gel propellant has the advantage of controllable flux as liquid propellant and long-term reservation as solid propellant, however, the evaporation and combustion problem of gel spray droplet bores with the gel propellant development and combustor design all the time, and hampers gel propellant practical engineering applications. In this paper, the gel single droplet combustion experiment system is designed and constructed, and then the evaporation and combustion mechanism is explored deeply based on the experimental phenomena of organic gel unsymmetrical dimethylhydrazine (UDMH) single droplet burning in nitrogen tetroxide. The organic gel spray droplet multi-component evaporation model is developed for three different evaporation phases of the gel layer, i.e. the forming, expanding and bursting of the gel layer based on the single droplet evaporation characteristics in experiment, and then the gel single droplet vaporization in high temperature gas phase is numerically simulated and compared with the result of conventional liquid droplet using the elementary model parameters and physic property parameters. The result shows that the gel content on the droplet surface increases slowly at the beginning of evaporation, however it would increase rapidly to a mass fraction of 95% and form the gel layer in a limited time after exceeding a critical evaporation time, which results in surface mass flux dropping to 0 and surface temperature reaching the UDMH boil point rapidly. After the gel layer forming, the droplet radius and surface UDMH vapor mass fraction exhibit oscillation as the swelling-bursting phenomena in experiment. The gel droplet surface temperature holds above the boil point and the mass flux of gel droplet inner boiling evaporation is stronger than the conventional liquid droplet surface steady evaporation which makes the life time of gel droplet much shorter.
    • 基金项目: 国家重点基础研究发展计划(批准号: 6131020301)和国家自然科学基金(批准号: 51076168)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 6131020301), and the National Natural Science Foundation of China (Grant No. 51076168).
    [1]

    Rahimi S, Hasan D, Peretz A 2004 J. Propul. Power 20 93

    [2]

    Yasuhara W K, Finato S R, Olson A M 1993 2nd Annual AIAA SDIO Interceptor Technology Conference (Albuquerque: American Institute of Aeronautics and Astronautics)

    [3]

    Palaszewski B, Powell R 1994 J. Propul. Power 10 828

    [4]

    Feng S J, He B, Nie W S 2009 J. Rocket Propul. 35 1 (in Chinese) [丰松江, 何博, 聂万胜 2009 火箭推进 35 1]

    [5]

    Wang L, Li J, Yang Y J 2004 Acta Phys. Sin. 53 160 (in Chinese) [王理, 李黎, 杨亚江 2004 53 160]

    [6]

    Han W, Shan S Q, Du Z G, Yu J, Yang C, Wu J 2009 Chem. Propel. & Polymeric Mater. 7 38 (in Chinese) [韩伟, 单世群, 杜宗罡, 于君, 杨超, 吴金 2009 化学推进剂与高分子材料 7 38]

    [7]

    Yang W D, Zhang M Z 2006 J. Rocket Propul. 32 12 (in Chinese) [杨伟东, 张蒙正 2006 火箭推进 32 12]

    [8]

    Zhang M Z, Yang W D, Wang M 2008 J. Propul. Technol. 29 22 (in Chinese) [张蒙正, 杨伟东, 王玫 2008 推进技术 29 22]

    [9]

    Solomon Y, Natan B, Cohen Y 2009 Combust Flame 156 261

    [10]

    Desyatkov A, Madlener K, Ciezki H K 2008 44th AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Hartford: American Institute of Aeronautics and Astronautics)

    [11]

    Weiser V, Gläser S, Kelzenberg S, Eisenreich N, Roth E 2005 41st AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Tucson: American Institute of Aeronautics and Astronautics)

    [12]

    Mueller D C 1997 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [13]

    Kunin A, Natan B, Greenberg J B 2009 Progress in Propulsion Physics 1 225

    [14]

    Zhang M Z 2010 J. Rocket Propul. 36 1 (in Chinese) [张蒙正 2010 火箭推进 36 1]

    [15]

    Catoire L, Chaumeix N, Pichon S, Paillard C 2006 J. Propul. Power 22 120

    [16]

    Li Y Q, He P 2008 Transactions of Csice 26 56 (in Chinese) [李云清, 何鹏 2008 内燃机学报 26 56]

    [17]

    Hardt S, Wondra F 2008 J. Comput. Phys. 227 5871

    [18]

    Arnold S L http: // www. gentoogeek. org / steves_world / hypergol_properties. pdf [2011-9-25]

    [19]

    He B, Xiao Q, Nie W S, Feng S J 2011 Journal of the Academy of Equipment Command & Technology 22 55 (in Chinese) [何博, 肖强, 聂万胜, 丰松江 2011 装备指挥技术学院学报 22 55]

    [20]

    He B, Nie W S, Feng S J, Li G Q 2011 Adv. Mater. Res. 297 2333

  • [1]

    Rahimi S, Hasan D, Peretz A 2004 J. Propul. Power 20 93

    [2]

    Yasuhara W K, Finato S R, Olson A M 1993 2nd Annual AIAA SDIO Interceptor Technology Conference (Albuquerque: American Institute of Aeronautics and Astronautics)

    [3]

    Palaszewski B, Powell R 1994 J. Propul. Power 10 828

    [4]

    Feng S J, He B, Nie W S 2009 J. Rocket Propul. 35 1 (in Chinese) [丰松江, 何博, 聂万胜 2009 火箭推进 35 1]

    [5]

    Wang L, Li J, Yang Y J 2004 Acta Phys. Sin. 53 160 (in Chinese) [王理, 李黎, 杨亚江 2004 53 160]

    [6]

    Han W, Shan S Q, Du Z G, Yu J, Yang C, Wu J 2009 Chem. Propel. & Polymeric Mater. 7 38 (in Chinese) [韩伟, 单世群, 杜宗罡, 于君, 杨超, 吴金 2009 化学推进剂与高分子材料 7 38]

    [7]

    Yang W D, Zhang M Z 2006 J. Rocket Propul. 32 12 (in Chinese) [杨伟东, 张蒙正 2006 火箭推进 32 12]

    [8]

    Zhang M Z, Yang W D, Wang M 2008 J. Propul. Technol. 29 22 (in Chinese) [张蒙正, 杨伟东, 王玫 2008 推进技术 29 22]

    [9]

    Solomon Y, Natan B, Cohen Y 2009 Combust Flame 156 261

    [10]

    Desyatkov A, Madlener K, Ciezki H K 2008 44th AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Hartford: American Institute of Aeronautics and Astronautics)

    [11]

    Weiser V, Gläser S, Kelzenberg S, Eisenreich N, Roth E 2005 41st AIAA/ASME /SAE/ASEE Joint Propulsion Conference & Exhibit (Tucson: American Institute of Aeronautics and Astronautics)

    [12]

    Mueller D C 1997 Ph. D. Dissertation (Pennsylvania: The Pennsylvania State University)

    [13]

    Kunin A, Natan B, Greenberg J B 2009 Progress in Propulsion Physics 1 225

    [14]

    Zhang M Z 2010 J. Rocket Propul. 36 1 (in Chinese) [张蒙正 2010 火箭推进 36 1]

    [15]

    Catoire L, Chaumeix N, Pichon S, Paillard C 2006 J. Propul. Power 22 120

    [16]

    Li Y Q, He P 2008 Transactions of Csice 26 56 (in Chinese) [李云清, 何鹏 2008 内燃机学报 26 56]

    [17]

    Hardt S, Wondra F 2008 J. Comput. Phys. 227 5871

    [18]

    Arnold S L http: // www. gentoogeek. org / steves_world / hypergol_properties. pdf [2011-9-25]

    [19]

    He B, Xiao Q, Nie W S, Feng S J 2011 Journal of the Academy of Equipment Command & Technology 22 55 (in Chinese) [何博, 肖强, 聂万胜, 丰松江 2011 装备指挥技术学院学报 22 55]

    [20]

    He B, Nie W S, Feng S J, Li G Q 2011 Adv. Mater. Res. 297 2333

  • [1] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离.  , 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] 赵豪, 吴志豪, 胡晓红, 凡凤仙, 苏明旭. 外加液滴条件下固体细颗粒声凝并特性.  , 2023, 72(6): 064702. doi: 10.7498/aps.72.20221912
    [3] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋. 表面活性剂液滴过渡沸腾的Marangoni效应与二次液滴形成.  , 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [4] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [5] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性.  , 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [6] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响.  , 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性.  , 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [8] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性对含可溶性活性剂垂直液膜排液的影响.  , 2018, 67(21): 214703. doi: 10.7498/aps.67.20181020
    [9] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响.  , 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [10] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟.  , 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [11] 李春曦, 陈朋强, 叶学民. 含活性剂液滴在倾斜粗糙壁面上的铺展稳定性.  , 2015, 64(1): 014702. doi: 10.7498/aps.64.014702
    [12] 李春曦, 陈朋强, 叶学民. 连续凹槽基底对含非溶性活性剂薄液膜流动特性的影响.  , 2014, 63(22): 224703. doi: 10.7498/aps.63.224703
    [13] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [14] 何峰, 王志军, 黄义辉, 叶鹏, 王锦程. 存在液膜的毛细蒸发过程研究.  , 2013, 62(24): 246401. doi: 10.7498/aps.62.246401
    [15] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征.  , 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [16] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积.  , 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [17] 李春曦, 裴建军, 叶学民. 波纹基底上含不溶性活性剂液滴的铺展稳定性.  , 2013, 62(17): 174702. doi: 10.7498/aps.62.174702
    [18] 杜人君, 解文军. 声悬浮条件下环己烷液滴的蒸发凝固.  , 2011, 60(11): 114302. doi: 10.7498/aps.60.114302
    [19] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究.  , 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [20] 普小云, 柳清菊, 张中明, 林理忠. 表面单分子膜的垂悬液滴方法研究.  , 1998, 47(1): 60-67. doi: 10.7498/aps.47.60
计量
  • 文章访问数:  8629
  • PDF下载量:  593
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-27
  • 修回日期:  2011-12-06
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map