搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管中点缺陷对热导率影响的正交试验模拟分析

李威 冯妍卉 陈阳 张欣欣

引用本文:
Citation:

碳纳米管中点缺陷对热导率影响的正交试验模拟分析

李威, 冯妍卉, 陈阳, 张欣欣

Research on the influences of point defects on the thermal conductivity of carbon nanotube by simulation with orthogonal array testing strategy

Li Wei, Feng Yan-Hui, Chen Yang, Zhang Xin-Xin
PDF
导出引用
  • 在碳纳米管的制备过程中, 各种点缺陷不可避免地存在于其晶格结构中, 对于碳管的热输运性质造成不可忽视的影响. 使用非平衡分子动力学方法, 选用反应经验键序势能, 模拟计算含有缺陷的碳纳米管的热导率. 尝试采用正交试验方法设计算例, 不但减少了计算量, 并且利于分析缺陷类型、 管长和管径三种结构因素对缺陷造成的热导率下降影响的主次和趋势. 重点研究了掺杂、 吸附和空位三类点缺陷的影响, 与无缺陷完整碳纳米管进行比较, 开展缺陷效应分析, 并进一步考察了环境温度等因素的影响. 模拟结果表明, 相对完整无缺陷碳管, 含有点缺陷的碳管热导率显着下降; 在有缺陷存在的情况下, 缺陷的类型对碳管热导率的影响最大, 管径次之, 管长影响相对最小; 缺陷类型对热导率影响力从大到小依次为: 空位 掺杂 吸附; 不同环境温度下, 点缺陷对碳管热导率的影响不尽相同.
    In the preparation process of carbon nanotubes, various point defects inevitably come into being in the lattice structures. The defects strongly affect the thermal transport properties of carbon nanotubes. Thermal conduction in carbon nanotube is simulated by using nonequilibrium molecular dynamics method with reactive bond order (REBO) potential. Thermal conductivities of carbon nanotubes with and without defects are calculated for comparison. An orthogonal array testing strategy is employed. In the calculation it greatly saves the experimental effort and identifies the degrees of influence of such structural factors as defect type, tube length, tube radius, etc. on thermal conductivity of tube. The effects of three types of point defects: vacancy, doping and adsorption are primarily studied, and the ambient temperature factor is also analyzed. Simulation results show that the thermal conductivity of carbon nanotubes with defects decreases significantly due to point defects compared with that of perfect carbon nanotubes. The defect type has the first greatest influence on the decrease of thermal conductivity, and hvae the second third greatest infuluences respeetively the radius and the length of carbon nanotubes. The degrees of influence of the above types of point defect are in the order of vacancydopingadsorption. Different types of point defects have different effects on tubes at different ambient temperatures.
    • 基金项目: 国家自然科学基金(批准号: 50876010, 51176011)、 教育部 新世纪优秀人才支持计划(NCET-08-0721)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50876010, 51176011) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0721).
    [1]

    Che J W, Iii W A G 2000 Nanotechnology 11 65

    [2]

    Kondo N, Yamamoto T, Watanabe K 2006 e-Journal of Surface Science and Nanotechnology 4 239

    [3]
    [4]
    [5]

    Yao Z, Wang J S, Li B, Liu G R 2005 Phys. Rev. B 71 85417

    [6]
    [7]

    Bi K, Chen Y, Yang J, Wang Y, Chen M 2006 Phys. Lett. A 350 150

    [8]
    [9]

    Cummings A, Osman M, Srivastava D, Menon M 2004 Phys. Rev. B 70 115405

    [10]

    Padgett C W, Brenner D W 2004 Nano Lett. 4 1051

    [11]
    [12]

    Meng F Y, Ogata S, Xu D S, Shibutani Y, Shi S Q 2007 Phys. Rev. B 75 205403

    [13]
    [14]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 2514

    [15]
    [16]

    Zhang Q, Chen G, Yoon S F, Ahn J, Wang S G, Zhou Q, Wang Q, Li J Q 2002 Phys. Rev. B 66 165440

    [17]
    [18]

    Yu C, Shi L, Yao Z, Li D, Majumdar A 2005 Nano Lett. 5 1842

    [19]
    [20]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 65502

    [21]
    [22]
    [23]

    Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2006 Nano Lett. 6 1589

    [24]
    [25]

    Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96

    [26]
    [27]

    Kim P, Shi L, Majumdar A, Mceuen P L 2001 Phys. Rev. Lett. 87 215502

    [28]

    Wang Z L, Liang J G, Tang D W 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟 2008 57 3391]

    [29]
    [30]
    [31]

    Berber S, Kwon Y K, Tomnek D 2000 Phys. Rev. Lett. 84 4613

    [32]
    [33]

    Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A, Haak J R 1984 The Journal of Chemical Physics 81 3684

    [34]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517

    [35]
    [36]

    Bi K D 2007 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [毕可东 2007 博士学位论文 (南京: 东南大学)]

    [37]
    [38]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [39]
    [40]
    [41]

    Jones J E 1924 Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 106 463

    [42]

    Tersoff J 1988 Phys. Rev. Lett. 61 2879

    [43]
    [44]
    [45]

    Osman M A, Srivastava D 2001 Nanotechnology 21

    [46]
    [47]

    Maruyama S 2003 Nanoscale and Microscale Thermophysical Engineering 7 41

    [48]

    Grujicic M, Cao G, Gersten B 2004 Materials Science and Engineering B 107 204

    [49]
    [50]

    Lukes J R, Zhong H 2007 Journal of Heat Transfer 129 705

    [51]
    [52]
    [53]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 55 3552]

    [54]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [55]
    [56]

    Zhang G, Li B 2005 The Journal of Chemical Physics 123 114714

    [57]
    [58]

    Xiao Y, Yan X H, Cao J X, Ding J W, Mao Y L, Xiang J 2004 Phys. Rev. B 69 205415

    [59]
    [60]
    [61]

    Fan H, Zhang K, Yuen M M F 2006 Electronic Materials and Packaging, 2006. EMAP 2006 International Conference on, Kowloon, 2006-01-01 1

    [62]

    Ren C, Zhang W, Xu Z, Zhu Z, Huai P 2010 The Journal of Physical Chemistry C 114 5786

    [63]
  • [1]

    Che J W, Iii W A G 2000 Nanotechnology 11 65

    [2]

    Kondo N, Yamamoto T, Watanabe K 2006 e-Journal of Surface Science and Nanotechnology 4 239

    [3]
    [4]
    [5]

    Yao Z, Wang J S, Li B, Liu G R 2005 Phys. Rev. B 71 85417

    [6]
    [7]

    Bi K, Chen Y, Yang J, Wang Y, Chen M 2006 Phys. Lett. A 350 150

    [8]
    [9]

    Cummings A, Osman M, Srivastava D, Menon M 2004 Phys. Rev. B 70 115405

    [10]

    Padgett C W, Brenner D W 2004 Nano Lett. 4 1051

    [11]
    [12]

    Meng F Y, Ogata S, Xu D S, Shibutani Y, Shi S Q 2007 Phys. Rev. B 75 205403

    [13]
    [14]

    Hone J, Whitney M, Piskoti C, Zettl A 1999 Phys. Rev. B 59 2514

    [15]
    [16]

    Zhang Q, Chen G, Yoon S F, Ahn J, Wang S G, Zhou Q, Wang Q, Li J Q 2002 Phys. Rev. B 66 165440

    [17]
    [18]

    Yu C, Shi L, Yao Z, Li D, Majumdar A 2005 Nano Lett. 5 1842

    [19]
    [20]

    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 65502

    [21]
    [22]
    [23]

    Choi T Y, Poulikakos D, Tharian J, Sennhauser U 2006 Nano Lett. 6 1589

    [24]
    [25]

    Pop E, Mann D, Wang Q, Goodson K, Dai H 2006 Nano Lett. 6 96

    [26]
    [27]

    Kim P, Shi L, Majumdar A, Mceuen P L 2001 Phys. Rev. Lett. 87 215502

    [28]

    Wang Z L, Liang J G, Tang D W 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟 2008 57 3391]

    [29]
    [30]
    [31]

    Berber S, Kwon Y K, Tomnek D 2000 Phys. Rev. Lett. 84 4613

    [32]
    [33]

    Berendsen H J C, Postma J P M, Van Gunsteren W F, Dinola A, Haak J R 1984 The Journal of Chemical Physics 81 3684

    [34]

    Maiti A, Mahan G D, Pantelides S T 1997 Solid State Commun. 102 517

    [35]
    [36]

    Bi K D 2007 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [毕可东 2007 博士学位论文 (南京: 东南大学)]

    [37]
    [38]

    Brenner D W 1990 Phys. Rev. B 42 9458

    [39]
    [40]
    [41]

    Jones J E 1924 Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 106 463

    [42]

    Tersoff J 1988 Phys. Rev. Lett. 61 2879

    [43]
    [44]
    [45]

    Osman M A, Srivastava D 2001 Nanotechnology 21

    [46]
    [47]

    Maruyama S 2003 Nanoscale and Microscale Thermophysical Engineering 7 41

    [48]

    Grujicic M, Cao G, Gersten B 2004 Materials Science and Engineering B 107 204

    [49]
    [50]

    Lukes J R, Zhong H 2007 Journal of Heat Transfer 129 705

    [51]
    [52]
    [53]

    Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 55 3552]

    [54]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 58 7809]

    [55]
    [56]

    Zhang G, Li B 2005 The Journal of Chemical Physics 123 114714

    [57]
    [58]

    Xiao Y, Yan X H, Cao J X, Ding J W, Mao Y L, Xiang J 2004 Phys. Rev. B 69 205415

    [59]
    [60]
    [61]

    Fan H, Zhang K, Yuen M M F 2006 Electronic Materials and Packaging, 2006. EMAP 2006 International Conference on, Kowloon, 2006-01-01 1

    [62]

    Ren C, Zhang W, Xu Z, Zhu Z, Huai P 2010 The Journal of Physical Chemistry C 114 5786

    [63]
  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究.  , 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究.  , 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [3] 杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男. 基于扫描电子显微镜的碳纳米管拾取操作方法研究.  , 2018, 67(13): 136801. doi: 10.7498/aps.67.20180347
    [4] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响.  , 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [5] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响.  , 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [6] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究.  , 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [7] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法.  , 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [8] 李瑞, 孙丹海. 缺陷对碳纳米管摩擦与运动行为的影响.  , 2014, 63(5): 056101. doi: 10.7498/aps.63.056101
    [9] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [10] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [11] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率.  , 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [12] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象.  , 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [13] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟.  , 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [14] 曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸. 纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究.  , 2012, 61(4): 046501. doi: 10.7498/aps.61.046501
    [15] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟.  , 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究.  , 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [17] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运.  , 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [18] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响.  , 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [19] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响.  , 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [20] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究.  , 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
计量
  • 文章访问数:  7993
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-10
  • 修回日期:  2011-12-05
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map