搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Poly-Si1-xGex栅应变SiN型金属-氧化物-半导体场效应管栅耗尽模型研究

胡辉勇 雷帅 张鹤鸣 宋建军 宣荣喜 舒斌 王斌

引用本文:
Citation:

Poly-Si1-xGex栅应变SiN型金属-氧化物-半导体场效应管栅耗尽模型研究

胡辉勇, 雷帅, 张鹤鸣, 宋建军, 宣荣喜, 舒斌, 王斌

Study of gate depletion effect in strained Si NMOSFET with polycrystalline silicon germanium gate

Hu Hui-Yong, Lei Shuai, Zhang He-Ming, Song Jian-Jun, Xuan Rong-Xi, Shu Bin, Wang Bin
PDF
导出引用
  • 基于对Poly-Si1-xGex栅功函数的分析,通过求解Poisson方程, 获得了Poly-Si1-xGex栅应变Si N型金属-氧化物-半导体场效应器件 (NMOSFET)垂直电势与电场分布模型.在此基础上,建立了考虑栅耗尽的Poly-Si1-xGex栅应变Si NMOSFET的阈值电压模型和栅耗尽宽度及其归一化模型,并利用该模型,对器件几何结构参数、 物理参数尤其是Ge组分对Poly-Si1-xGex栅耗尽层宽度的影响, 以及栅耗尽层宽度对器件阈值电压的影响进行了模拟分析.结果表明:多晶耗尽随Ge组分和栅掺杂浓度的增加而减弱, 随衬底掺杂浓度的增加而增强;此外,多晶耗尽程度的增强使得器件阈值电压增大. 所得结论能够为应变Si器件的设计提供理论依据.
    Based on the analysis of Poly-Si1-xGex gate work function and by solving Poisson equation, the models of vertical electric field and potential distribution in strained Si NMOSFET with Poly-Si1-xGex gate are obtained; threshold voltage model and the gate depletion thickness and it's normalization model are established in strained Si NMOSFET based on the above results, with the gate depletion effect of Poly-Si1-xGex taken into account. Then the influences of device geometrical and physical parameters of device especially the Ge fraction on Poly-Si1-xGex gate depletion thickness are investigated. Furthermore, the effect of gate depletion thickness on threshold voltage is analyzed. It shows that the poly depletion thickness decreases with the increases of Ge fraction and gate doping concentration, while it increases with the increase of substrate doping concentration. Furthermore, the threshold voltage increases with the increase of gate depletion thickness. The results can provide theoretical references to the design of strained Si devices.
    • 基金项目: 中央高校基本科研业务费(批准号: 72105499, 72104089)、 陕西省自然科学基础研究计划资助项目(批准号: 2010JQ8008) 和预研基金(批准号: 9140C090303110C0904)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 72105499, 72104089), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2010JQ8008) and the Pre-Research of China (Grant No. 9140C09303110C0904).
    [1]

    Hung M F, Wu Y C, Tang Z Y 2011 Appl. Phys. Lett. 98 162108

    [2]

    Doyle B S, Datta S, Doczy M, Hareland S, Jin B, Kavalieros J, Linton T, Murthy A, Rios R, Chau R 2003 IEEE Electron Dev. Lett. 24 263

    [3]

    Irisawa T, Numata T, Tezuka T, Usuda K, Sugiyama N, Takagi S I 2008 IEEE Trans. Electron Dev. 55 649

    [4]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 2064 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2010 59 2064]

    [5]

    Song J J, Zhang H M, Xuan R X, Hu H Y, Dai X Y 2009 Acta Phys. Sin. 58 4958 (in Chinese) [宋建军, 张鹤鸣, 宣荣喜, 胡辉勇, 戴显英 2009 58 4958]

    [6]

    Maiti T K, Banerjee A, Maiti C K 2010 Engineering 2 879

    [7]

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2010 Atca Phys. Sin. 59 579 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2010 59 579]

    [8]

    Kang Y, Kim H, Lee J, Son Y, Park B G, Lee J D, Shin H 2009 IEEE Electron Dev. Lett. 30 1371

    [9]

    Schuegraf K F, King C C, Hu C M 1993 International Symposium on VLSI Technology, Systems, and Applications: Proceeding of Technical Papers, Taipei, May 12-14, 86

    [10]

    Grados H R J, Manera L T, Wada R, Diniz J A, Doi L, Tatsch P J, Figueroa H E, Swart J W 2010 Japan J. Appl. Phys. 49 04DC04

    [11]

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2009 Acta Phys. Sin. 58 7947 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2009 58 7947]

    [12]

    Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans. Electron Dev. 51 2069

    [13]

    Liu H T, Sin J K O, Xuan P Q, Bokor J 2004 IEEE Trans. Electron Dev. 51 106

    [14]

    Ponomarev Y V, Stolk P A, Dachs C J J, Montree A H 2000 IEEE Trans. Electron Dev. 47 1507

    [15]

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Defense Industry Press) p366 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京:国防工业出版社)]

    [16]

    Chang T Y, Izabelle A 1989 J. Appl. Phys. 65 2162

    [17]

    Hellberg P E, Zhang S L, Petersson C S 1997 IEEE Electron Dev. Lett. 18 456

    [18]

    Gupta A 2003 Investigation of High-Speeed Optoelectronic Receivers in Silicon Germanium (SiGe) (Pittsburgh:University of Pittsburgh)

    [19]

    Julian E S, Alamsyah A T 2006 the 2nd Information and Communication Technology Seminar, Surabaya, Indonesia, August 29, 132

    [20]

    Josse E, Skotnicki T 2001 Solid-State Device Research Conference, Crolles, France, September 11-13, 2001 207

    [21]

    Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G 2010 J. Appl. Phys. 107 094308

    [22]

    Goo J S, Xiang Q, Takamura Y, Arasnia F, Paton E N, Besser P, Pan J, Lin M R 2003 IEEE Electron Dev. Lett. 24 568

  • [1]

    Hung M F, Wu Y C, Tang Z Y 2011 Appl. Phys. Lett. 98 162108

    [2]

    Doyle B S, Datta S, Doczy M, Hareland S, Jin B, Kavalieros J, Linton T, Murthy A, Rios R, Chau R 2003 IEEE Electron Dev. Lett. 24 263

    [3]

    Irisawa T, Numata T, Tezuka T, Usuda K, Sugiyama N, Takagi S I 2008 IEEE Trans. Electron Dev. 55 649

    [4]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2010 Acta Phys. Sin. 59 2064 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2010 59 2064]

    [5]

    Song J J, Zhang H M, Xuan R X, Hu H Y, Dai X Y 2009 Acta Phys. Sin. 58 4958 (in Chinese) [宋建军, 张鹤鸣, 宣荣喜, 胡辉勇, 戴显英 2009 58 4958]

    [6]

    Maiti T K, Banerjee A, Maiti C K 2010 Engineering 2 879

    [7]

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2010 Atca Phys. Sin. 59 579 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2010 59 579]

    [8]

    Kang Y, Kim H, Lee J, Son Y, Park B G, Lee J D, Shin H 2009 IEEE Electron Dev. Lett. 30 1371

    [9]

    Schuegraf K F, King C C, Hu C M 1993 International Symposium on VLSI Technology, Systems, and Applications: Proceeding of Technical Papers, Taipei, May 12-14, 86

    [10]

    Grados H R J, Manera L T, Wada R, Diniz J A, Doi L, Tatsch P J, Figueroa H E, Swart J W 2010 Japan J. Appl. Phys. 49 04DC04

    [11]

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2009 Acta Phys. Sin. 58 7947 (in Chinese) [宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2009 58 7947]

    [12]

    Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans. Electron Dev. 51 2069

    [13]

    Liu H T, Sin J K O, Xuan P Q, Bokor J 2004 IEEE Trans. Electron Dev. 51 106

    [14]

    Ponomarev Y V, Stolk P A, Dachs C J J, Montree A H 2000 IEEE Trans. Electron Dev. 47 1507

    [15]

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Defense Industry Press) p366 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京:国防工业出版社)]

    [16]

    Chang T Y, Izabelle A 1989 J. Appl. Phys. 65 2162

    [17]

    Hellberg P E, Zhang S L, Petersson C S 1997 IEEE Electron Dev. Lett. 18 456

    [18]

    Gupta A 2003 Investigation of High-Speeed Optoelectronic Receivers in Silicon Germanium (SiGe) (Pittsburgh:University of Pittsburgh)

    [19]

    Julian E S, Alamsyah A T 2006 the 2nd Information and Communication Technology Seminar, Surabaya, Indonesia, August 29, 132

    [20]

    Josse E, Skotnicki T 2001 Solid-State Device Research Conference, Crolles, France, September 11-13, 2001 207

    [21]

    Lee H, Vashaee D, Wang D Z, Dresselhaus M S, Ren Z F, Chen G 2010 J. Appl. Phys. 107 094308

    [22]

    Goo J S, Xiang Q, Takamura Y, Arasnia F, Paton E N, Besser P, Pan J, Lin M R 2003 IEEE Electron Dev. Lett. 24 568

  • [1] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究.  , 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [2] 范敏敏, 徐静平, 刘璐, 白玉蓉, 黄勇. 高k栅介质GeOI金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计.  , 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [3] 辛艳辉, 刘红侠, 王树龙, 范小娇. 堆叠栅介质对称双栅单Halo应变Si金属氧化物半导体场效应管二维模型.  , 2014, 63(24): 248502. doi: 10.7498/aps.63.248502
    [4] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究.  , 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [5] 辛艳辉, 刘红侠, 范小娇, 卓青青. 非对称Halo异质栅应变Si SOI MOSFET的二维解析模型.  , 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [6] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型.  , 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [7] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型.  , 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [8] 宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇. 四方晶系应变Si空穴散射机制.  , 2012, 61(5): 057304. doi: 10.7498/aps.61.057304
    [9] 王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳. 单轴应变Si导带色散关系解析模型.  , 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [10] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型.  , 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [11] 宋建军, 张鹤鸣, 戴显英, 宣荣喜, 胡辉勇, 王冠宇. 不同晶系应变Si状态密度研究.  , 2011, 60(4): 047106. doi: 10.7498/aps.60.047106
    [12] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型.  , 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [13] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型.  , 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [14] 赵丽霞, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜. 应变Si电子电导有效质量模型.  , 2010, 59(9): 6545-6548. doi: 10.7498/aps.59.6545
    [15] 宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜. 应变Si/(001)S1-xGex本征载流子浓度模型.  , 2010, 59(3): 2064-2067. doi: 10.7498/aps.59.2064
    [16] 李劲, 刘红侠, 李斌, 曹磊, 袁博. 高k栅介质应变Si SOI MOSFET的阈值电压解析模型.  , 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [17] 宋建军, 张鹤鸣, 宣荣喜, 胡辉勇, 戴显英. 应变Si/(001)Si1-xGex空穴有效质量各向异性.  , 2009, 58(7): 4958-4961. doi: 10.7498/aps.58.4958
    [18] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型.  , 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [19] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 应变Si价带色散关系模型.  , 2008, 57(11): 7228-7232. doi: 10.7498/aps.57.7228
    [20] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究.  , 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
计量
  • 文章访问数:  7850
  • PDF下载量:  619
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-06
  • 修回日期:  2012-05-28
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map