搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷温度下钾和铯原子间弹性散射特性的精确计算

张计才 朱遵略 孙金锋

引用本文:
Citation:

超冷温度下钾和铯原子间弹性散射特性的精确计算

张计才, 朱遵略, 孙金锋

Accurate calculation of elastic scattering properties of potassium and cesium atoms at ultracold temperatures

Zhang Ji-Cai, Zhu Zun-Lue, Sun Jin-Feng
PDF
导出引用
  • 本文分别用量子方法和半经典方法计算了超冷钾和铯原子之间弹性碰撞的s波散射长度,有效力程和p波散射长度等散射参数. 超冷温度下39K-133Cs原子间的弹性散射截面主要为s波贡献,随着碰撞能量的增加散射截面有丰富的形状共振出现, 计算发现单重态和三重态截面分别存在显著的g波和d波形状共振.另外,本文应用简并内态近似方法获得了41K-133Cs 超精细态相互作用时的s波散射长度.
    In this paper, we calculate the scattering parameters for collision between potassium and cesium atoms at ultracold temperatures, such as s-wave scattering length, effective range and p-wave scattering length, by the quantum method and semiclassical method, respectively. The singlet and the triplet elastic scattering cross sections between 39K and Cs atoms at ultracold temperatures are dominated by s-wave scattering, and shape resonance occurs with the increase of collision energy. There exist pronounced g-wave and d-wave shape resonances for the singlet and the triplet cross sections, respectively. In addition, s-wave scattering lengths are calculated by using the degenerate internet state approximation for selected hyperfine states of 41KCs.
    • 基金项目: 国家自然科学基金(批准号: 10874064),河南省教育厅自然科学基金(批准号: 2011A140017) 和河南师范大学青年基金(批准号: 2010qk03)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10874064 ), the Natural Science Foundation of Educational Bureau of Henan Province, China (Grant No. 2011A140017), and the Youth Foundation of Henan Normal University(Grant No. 2010qk03).
    [1]

    Weiner J, Bagnato V S, Zilio S, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [2]

    Chin C, Grimm R, Julienne P S, Tiesinga E 2010 Rev. Mod. Phys. 82 125

    [3]

    Burnett K, Julienne P S, Lett P D, Tiesinga E, Williams C J 2002 Nature(London) 416 225

    [4]

    Esry B D, Greene C H, Burke J P, Bohn J L 1997 Phys. Rev. Lett. 78 3594

    [5]

    Wang H, Nikolov A N, Ensher J R, Gould P L, Eyler E E, Stwalley W C, Burke J P, Bohn J L, Greene C H, Tiesinga E, Williams C J, Julienne P S 2000 Phys. Rev. A 62 052704

    [6]

    De Sarlo L, Maioli P, Barontini G, Catani J, Minardi F, Inguscio M 2007 Phys. Rev. A 75 022715

    [7]

    Falke S, Knöckel H, Friebe J, Riedmann M, Tiemann E, Lisdat C 2008 Phys. Rev. A 78 012503

    [8]

    Leo P J, Williams C J, Julienne P S 2000 Phys. Rev. Lett. 85 2721

    [9]

    Sun J F, Du B G, Zhang J C, Li W, Zhu Z L 2009 Chin. Phys. B 18 1019

    [10]

    Roati G, Zaccanti M, D'Errico C, Catani J, Modugno M, Simoni A, Inguscio M, Modugno G 2007 Phys. Rev. Lett. 99 010403

    [11]

    DeMarco B, Jin D S 1999 Science 285 1703

    [12]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [13]

    Weber T, Herbig J, Mark M, Näerl H-C, Grimm R 2003 Science 299 232

    [14]

    Zhang J C, Jia G R, Sun J F, Liu Y F 2010 J. Low Temp.Phys. 159 484

    [15]

    Ferber R, Klincare I, Nikolayeva O, Tamanis M, Knöckel H, Tiemann E, Pashov A 2009 Phys. Rev. A 80 062501

    [16]

    Côt? R, Dalgarno A, Wang H, Stwalley W C 1998 Phys. Rev. A 57 4118

    [17]

    Weiss S B, Bhattacharya M, Bigelow N P 2003 Phys. Rev. A 68 042708

    [18]

    Dalgarno A, Rudge M R H 1965 Proc. R. Soc. London, Ser. A 286 519

    [19]

    Simos T E 1997 Computers Chem. 21 125

    [20]

    Mott N F, Massey H S W 1965 The Theory of Atomic Collisons (Oxford: Clarendon)

    [21]

    Gribakin G F, Flambaum V V 1993 Phys. Rev. A 48 546

    [22]

    Flambaum V V, Gribakin G F, Harabati C 1999 Phys. Rev. A 59 1998

    [23]

    Dickinson A S 2008 J. Phys. B 41 175302

    [24]

    Sun J F, Zhang J C, Wang J M 2006 Chin. Phys. 15 531

    [25]

    Jamieson M J, Zygelman B 2001 Phys. Rev. A 64 032703

    [26]

    Sansonetti J E, Martin W C 2005 Handbook of Basic Atomic Spectroscopic Data (NIST, 2005)

    [27]

    van Kempen E G M, Kokkelmans S J J M F, Heinzen D J, Verhaar B J 2002 Phys.Rev. Lett. 88 093201

    [28]

    Martinez de Escobar Y N, Mickelson P G, Pellegrini P, Nagel S B, Traverso A, Yan M, Côt? R, Killian T C 2008 Phys. Rev. A 78 062708

    [29]

    Londoño B E, Mahecha J E, Luc-Koenig E, Crubellier A 2010 Phys. Rev. A 82 012510

    [30]

    Tiecke T G, Goosen M R, Walraven J T M, Kokkelmans S J J M F 2010 Phys. Rev. A 82 042712

  • [1]

    Weiner J, Bagnato V S, Zilio S, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [2]

    Chin C, Grimm R, Julienne P S, Tiesinga E 2010 Rev. Mod. Phys. 82 125

    [3]

    Burnett K, Julienne P S, Lett P D, Tiesinga E, Williams C J 2002 Nature(London) 416 225

    [4]

    Esry B D, Greene C H, Burke J P, Bohn J L 1997 Phys. Rev. Lett. 78 3594

    [5]

    Wang H, Nikolov A N, Ensher J R, Gould P L, Eyler E E, Stwalley W C, Burke J P, Bohn J L, Greene C H, Tiesinga E, Williams C J, Julienne P S 2000 Phys. Rev. A 62 052704

    [6]

    De Sarlo L, Maioli P, Barontini G, Catani J, Minardi F, Inguscio M 2007 Phys. Rev. A 75 022715

    [7]

    Falke S, Knöckel H, Friebe J, Riedmann M, Tiemann E, Lisdat C 2008 Phys. Rev. A 78 012503

    [8]

    Leo P J, Williams C J, Julienne P S 2000 Phys. Rev. Lett. 85 2721

    [9]

    Sun J F, Du B G, Zhang J C, Li W, Zhu Z L 2009 Chin. Phys. B 18 1019

    [10]

    Roati G, Zaccanti M, D'Errico C, Catani J, Modugno M, Simoni A, Inguscio M, Modugno G 2007 Phys. Rev. Lett. 99 010403

    [11]

    DeMarco B, Jin D S 1999 Science 285 1703

    [12]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [13]

    Weber T, Herbig J, Mark M, Näerl H-C, Grimm R 2003 Science 299 232

    [14]

    Zhang J C, Jia G R, Sun J F, Liu Y F 2010 J. Low Temp.Phys. 159 484

    [15]

    Ferber R, Klincare I, Nikolayeva O, Tamanis M, Knöckel H, Tiemann E, Pashov A 2009 Phys. Rev. A 80 062501

    [16]

    Côt? R, Dalgarno A, Wang H, Stwalley W C 1998 Phys. Rev. A 57 4118

    [17]

    Weiss S B, Bhattacharya M, Bigelow N P 2003 Phys. Rev. A 68 042708

    [18]

    Dalgarno A, Rudge M R H 1965 Proc. R. Soc. London, Ser. A 286 519

    [19]

    Simos T E 1997 Computers Chem. 21 125

    [20]

    Mott N F, Massey H S W 1965 The Theory of Atomic Collisons (Oxford: Clarendon)

    [21]

    Gribakin G F, Flambaum V V 1993 Phys. Rev. A 48 546

    [22]

    Flambaum V V, Gribakin G F, Harabati C 1999 Phys. Rev. A 59 1998

    [23]

    Dickinson A S 2008 J. Phys. B 41 175302

    [24]

    Sun J F, Zhang J C, Wang J M 2006 Chin. Phys. 15 531

    [25]

    Jamieson M J, Zygelman B 2001 Phys. Rev. A 64 032703

    [26]

    Sansonetti J E, Martin W C 2005 Handbook of Basic Atomic Spectroscopic Data (NIST, 2005)

    [27]

    van Kempen E G M, Kokkelmans S J J M F, Heinzen D J, Verhaar B J 2002 Phys.Rev. Lett. 88 093201

    [28]

    Martinez de Escobar Y N, Mickelson P G, Pellegrini P, Nagel S B, Traverso A, Yan M, Côt? R, Killian T C 2008 Phys. Rev. A 78 062708

    [29]

    Londoño B E, Mahecha J E, Luc-Koenig E, Crubellier A 2010 Phys. Rev. A 82 012510

    [30]

    Tiecke T G, Goosen M R, Walraven J T M, Kokkelmans S J J M F 2010 Phys. Rev. A 82 042712

  • [1] 杨艳, 张斌, 任仲雪, 白光如, 刘璐, 赵增秀. 极性分子CO高次谐波产生过程中的不对称性.  , 2022, 71(23): 234204. doi: 10.7498/aps.71.20221714
    [2] 徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁. 金属目标原子晶格结构对其量子雷达散射截面的影响.  , 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [3] 张计才, 朱遵略, 孙金锋. 超冷钠原子弹性散射特性的精确计算.  , 2013, 62(1): 013401. doi: 10.7498/aps.62.013401
    [4] 吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森. 内嵌不同形状散射子的局域共振型黏弹性覆盖层低频吸声性能研究.  , 2012, 61(21): 214302. doi: 10.7498/aps.61.214302
    [5] 臧华平, 李文峰, 令狐荣锋, 程新路, 杨向东. 钠分子同位素替代对低温下的He-Na2冷碰撞体系转动激发积分散射截面的影响.  , 2011, 60(2): 020304. doi: 10.7498/aps.60.020304
    [6] 李文峰, 令狐荣锋, 程新路, 杨向东. 氦同位素原子与钠分子碰撞转动激发积分散射截面的理论计算.  , 2010, 59(7): 4591-4597. doi: 10.7498/aps.59.4591
    [7] 李劲, 令狐荣锋, 司冠杰, 杨向东. 低能He原子与Li2分子碰撞散射截面理论计算.  , 2010, 59(8): 5424-5428. doi: 10.7498/aps.59.5424
    [8] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究.  , 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [9] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数.  , 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [10] 汪荣凯, 沈光先, 余春日, 杨向东. He-HF(DF,TF)碰撞体系散射截面的理论计算.  , 2008, 57(11): 6932-6938. doi: 10.7498/aps.57.6932
    [11] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究.  , 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [12] 邓一兵, 王世来. 动量空间中能质子-12C弹性散射截面和自旋量的研究.  , 2007, 56(1): 137-142. doi: 10.7498/aps.56.137
    [13] 张程华, 邱 巍, 辛俊丽, 牛英煜, 王晓伟, 王京阳. 电子碰撞下氢原子单离化反应三重微分散射截面的计算.  , 2003, 52(10): 2449-2452. doi: 10.7498/aps.52.2449
    [14] 金石琦, 徐至展. 电子与氖原子在10—100eV能量范围内的散射截面.  , 1998, 47(4): 577-582. doi: 10.7498/aps.47.577
    [15] 凤任飞, 武淑兰, 暨 青, 朱林繁, 刘小井, 徐克尊. 惰性气体原子对2500eV电子的绝对弹性散射微分截面.  , 1998, 47(8): 1272-1277. doi: 10.7498/aps.47.1272
    [16] 李少甫, 刘强, 徐向东, 钱青, 陈学俊. 多重散射展开方法应用于正电子-氢原子的弹性散射角分布的计算.  , 1993, 42(6): 911-917. doi: 10.7498/aps.42.911
    [17] 李彤, 徐向东, 刘强, 钱青, 陈学俊. 多重散射展开方法应用于电子-氢原子弹性散射角分布的计算.  , 1993, 42(6): 905-910. doi: 10.7498/aps.42.905
    [18] 张禹顺, 李扬国. 高能质子与原子核的弹性和非弹性散射.  , 1977, 26(5): 449-454. doi: 10.7498/aps.26.449
    [19] 章思俊. π-N弹性散射的第二共振峰.  , 1964, 20(3): 216-226. doi: 10.7498/aps.20.216
    [20] 金星南. 高能电子对原子核C12的弹性散射.  , 1959, 15(1): 25-31. doi: 10.7498/aps.15.25
计量
  • 文章访问数:  8513
  • PDF下载量:  708
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-31
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回
Baidu
map