-
相干合成技术是实现高功率、高亮度光纤激光系统的重要技术途径.然而, 脉冲激光阵列中常常存在时域误差,这将影响脉冲激光的相干合成效果. 建立了脉冲激光存在时域误差时的相干合成理论模型,并在不同波形(方波、三角波、正弦波) 的脉冲激光存在时域误差时,对相干合成光束在远场的脉冲波形、峰值功率、光强分布和桶中功率(PIB)等特性进行了数值计算和对比分析.计算结果表明: 方波脉冲激光相干合成光束的脉冲波形受时域误差影响严重,光强分布和PIB随着时域误差 的增大发生线性变化;三角波脉冲激光相干合成光束的脉冲波形和峰值功率受时域误差影响严重,光强分布和PIB在时域误差较大时随着时域误差的增大发生较为剧烈的变化; 正弦波脉冲激光相干合成光束具有较好的输出特性,在两路正弦波脉冲激光相干合成中, 将两脉冲之间的时延控制在脉冲持续时间的10%以内,就能取得良好的合成效果.Coherent beam combination of fiber laser array is an important technology for high-power output fiber laser systems. However, the coherent beam combination is influenced by temporal error, which always exists in the laser array. The coherent beam combination of pulse fiber lasers in the presence of temporal error is investigated in theory in this paper. The effects of pulse shape and temporal error on the coherently combined beam are studied. The characteristics of combined beam, i.e. pulse shape, peak power, far-field pattern and power in barrel (PIB) are calculated and analyzed when the pulse shapes (including square, triangle and sine) and temporal errors are different. It is revealed that for coherently combining square pulse lasers, the pulse shape of the combined beam changes acutely because of temporal error, and the far-field pattern and PIB change proportionally with temporal error increasing; for coherently combining triangle pulse lasers, the pulse shape and the peak power of the combined beam are acutely influenced by temporal error, and the far-field pattern and the PIB change acutely when temporal error is large. It is revealed that coherently combined beam of sinusoidal pulse lasers has good characteristics when two pulse laser with sinusoidal pulse shapes are coherently combined and the time delay between the two pulses is less than 10% of pulse duration.
-
Keywords:
- high power laser /
- pulse laser /
- coherent beam combination
[1] Zhao H M, Lou Q H, Zhou J, Dong J X, Wei Y R, Wang Z J 2008 Acta Phys. Sin. 57 3525 (in Chinese) [赵宏明, 楼祺洪, 周军, 董景星, 魏运荣, 王之江 2008 57 3525]
[2] Liu Y, Cheng Y, Xu L X, Zheng R, Wang X B, Wang H S, Lu C Y, Sun B 2009 Acta Phys. Sin. 58 3929 (in Chinese) [刘洋, 程勇, 许立新, 郑睿, 王小兵, 王会升, 卢常勇, 孙斌 2009 58 3929]
[3] Wang J M, Duan K L, Wang Y S 2008 Acta Phys. Sin. 57 5627 (in Chinese) [王建明, 段开椋, 王屹山 2008 57 5627]
[4] Yang R F, Yang P, Shen F 2009 Acta Phys. Sin. 58 8297 (in Chinese) [杨若夫, 杨平, 沈锋 2009 58 8297]
[5] Xue Y H, Zhou J, He B, Li Z, Qi Y F, Liu C, Lou Q H 2010 Acta Phys. Sin. 59 7869 (in Chinese) [薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪 2010 59 7869]
[6] Fan X Y, Liu J J, Liu J S, Wu J L 2010 Acta Phys. Sin. 59 2462 (in Chinese) [范馨燕, 刘京郊, 刘金生, 武敬力 2010 59 2462]
[7] Paurisse M, Hanna M, Druon F, Georges P 2010 Opt. Lett. 35 1428
[8] Zhou P, Chen Z L, Wang X L, Li X, Liu Z J, Xu X J, Hou J, Jiang Z F 2008 Chin. Opt. Lett. 6 523
[9] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J, Zhao Y J 2010 Laser Phys. 20 1453
[10] Lombard L, Azarian A, Cadoret K, Bourdon P, Goular D, Canat G, Jolivet V, Jaouën Y, Vasseur O 2011 Opt. Lett. 36 523
[11] Daniault L, Hanna M, Lombard L, Zaouter Y, Mottay E, Goular D, Bourdon P, Druon F, Georges P 2011 Opt. Lett. 36 621
[12] Zhang M, Kelleher E J R, Pozharov A S, Obraztsova E D, Popov S V, Taylor J R 2011 Opt. Lett. 36 3984
[13] Lü B, Ma H 2000 Appl. Opt. 39 1279
[14] Zhou P, Liu Z, Xu X J, Chen Z L 2008 Appl. Opt. 47 3350
[15] Xiao R, Zhou P, Hou J, Jiang Z F, Liu M 2007 Acta Phys. Sin. 56 819 (in Chinese) [肖瑞, 周朴, 侯静, 姜宗福, 刘明 2007 56 819]
[16] Zhou P, Chen Z L, Wang X L, Li X, Liu Z J, Xu X 2009 Chin. Opt. Lett. 7 39
[17] Seise E, Klenke A, Limpert J, Tünnermann A 2010 Opt. Express 18 27828
[18] Schmidt O, Andersen T V, Limpert J, Tünnermann A 2009 Opt. Lett. 34 226
[19] Yu C X, Augst S J, Redmond S M, Goldizen K C, Murphy D V, Sanchez A, Fan T Y 2011 Opt. Lett. 36 2686
-
[1] Zhao H M, Lou Q H, Zhou J, Dong J X, Wei Y R, Wang Z J 2008 Acta Phys. Sin. 57 3525 (in Chinese) [赵宏明, 楼祺洪, 周军, 董景星, 魏运荣, 王之江 2008 57 3525]
[2] Liu Y, Cheng Y, Xu L X, Zheng R, Wang X B, Wang H S, Lu C Y, Sun B 2009 Acta Phys. Sin. 58 3929 (in Chinese) [刘洋, 程勇, 许立新, 郑睿, 王小兵, 王会升, 卢常勇, 孙斌 2009 58 3929]
[3] Wang J M, Duan K L, Wang Y S 2008 Acta Phys. Sin. 57 5627 (in Chinese) [王建明, 段开椋, 王屹山 2008 57 5627]
[4] Yang R F, Yang P, Shen F 2009 Acta Phys. Sin. 58 8297 (in Chinese) [杨若夫, 杨平, 沈锋 2009 58 8297]
[5] Xue Y H, Zhou J, He B, Li Z, Qi Y F, Liu C, Lou Q H 2010 Acta Phys. Sin. 59 7869 (in Chinese) [薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪 2010 59 7869]
[6] Fan X Y, Liu J J, Liu J S, Wu J L 2010 Acta Phys. Sin. 59 2462 (in Chinese) [范馨燕, 刘京郊, 刘金生, 武敬力 2010 59 2462]
[7] Paurisse M, Hanna M, Druon F, Georges P 2010 Opt. Lett. 35 1428
[8] Zhou P, Chen Z L, Wang X L, Li X, Liu Z J, Xu X J, Hou J, Jiang Z F 2008 Chin. Opt. Lett. 6 523
[9] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J, Zhao Y J 2010 Laser Phys. 20 1453
[10] Lombard L, Azarian A, Cadoret K, Bourdon P, Goular D, Canat G, Jolivet V, Jaouën Y, Vasseur O 2011 Opt. Lett. 36 523
[11] Daniault L, Hanna M, Lombard L, Zaouter Y, Mottay E, Goular D, Bourdon P, Druon F, Georges P 2011 Opt. Lett. 36 621
[12] Zhang M, Kelleher E J R, Pozharov A S, Obraztsova E D, Popov S V, Taylor J R 2011 Opt. Lett. 36 3984
[13] Lü B, Ma H 2000 Appl. Opt. 39 1279
[14] Zhou P, Liu Z, Xu X J, Chen Z L 2008 Appl. Opt. 47 3350
[15] Xiao R, Zhou P, Hou J, Jiang Z F, Liu M 2007 Acta Phys. Sin. 56 819 (in Chinese) [肖瑞, 周朴, 侯静, 姜宗福, 刘明 2007 56 819]
[16] Zhou P, Chen Z L, Wang X L, Li X, Liu Z J, Xu X 2009 Chin. Opt. Lett. 7 39
[17] Seise E, Klenke A, Limpert J, Tünnermann A 2010 Opt. Express 18 27828
[18] Schmidt O, Andersen T V, Limpert J, Tünnermann A 2009 Opt. Lett. 34 226
[19] Yu C X, Augst S J, Redmond S M, Goldizen K C, Murphy D V, Sanchez A, Fan T Y 2011 Opt. Lett. 36 2686
计量
- 文章访问数: 8125
- PDF下载量: 924
- 被引次数: 0