-
利用密度泛函理论系统地研究了YmSi@Al12 (m=13)团簇及其贮氢性质. 结果表明, 在所研究的尺度范围内, 钇原子未在Si@Al12团簇上团聚; 每个钇原子按18电子规则吸附氢分子, 其中Y3Si@Al12团簇可以吸附16个完整氢分子, 贮氢质量分数为5.0 %, 平均吸附能处于0.3240.527 eV之间, 较为理想的吸附能说明在室温条件下吸氢和脱氢是可行的.
-
关键词:
- YmSi@Al12团簇 /
- 吸附能 /
- 密度泛函理论 /
- 贮氢材料
The adsorption property of hydrogen molecules on YmSi@Al12 (m=13) cluster is investigated using the density functional theory. The results show that yttrium atoms do not suffer from clustering on the Si@Al12 cluster. The 18-electron rule can be used to design these systems, and Si@Al12 cluster coated with three yttrium atoms can adsorb 16 H2 molecules with a gravimetric density of up to 5.0 wt%. The calculated adsorption energy of 0.324-0.527 eV/H2 molecule is suited for reversible hydrogen storage in near-ambient conditions.-
Keywords:
- YmSi@Al12 clusters /
- adsorption energy /
- density functional theory /
- hydrogen storage medium
[1] Wong-Foy A G, Matzger A J, Yaghi O M 2006 J. Am. Chem. Soc. 128 3494
[2] Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422
[3] Meng S, Kaxiras E, Zhang Z 2007 Nano Lett. 7 663
[4] Kim Y H, Zhao Y, Williamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102
[5] Wang L, Zhao J J, Zhou Z, Zhang S B, Chen Z F 2009 J. Comput. Chem. 30 2509
[6] Lu Q L, Luo Q Q, Jalbout A F, Wan J G, Wang G H 2009 Eur. Phys. J. D 51 219
[7] Kochnev V K, Charkin O P, Klimenko N M 2009 Russ. J. Inorg. Chem. 54 1114
[8] Lu Q L, Jalbout A F, Luo Q Q,Wan J G,Wang G H 2008 J. Chem. Phys. 128 224707
[9] Goldberg A, Yarovsky I 2007 Phys. Rev. B 75 195403
[10] Li S, Gong X 2006 Phys. Rev. B 74 045432
[11] Akutsu M, Koyasu K, Atobe J, Hosoya N, Miyajima K, Mitsui M, Nakajima A 2006 J. Phys. Chem. A 110 12073
[12] Chen G, Kawazoe Y 2007 J. Chem. Phys. 126 014703
[13] Kumar V, Bhattacharjee S, Kawazoe Y 2000 Phys. Rev. B 61 8541
[14] Lu Q L, Wan J G 2010 J. Chem. Phys. 132 224308
[15] Li F, Zhao J J, Chen Z F 2010 Nanotechnology 21 134006
[16] Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 58 8077]
[17] Zhao Y, Kim Y H, Dillon A, Heben M, Zhang S 2005 Phys. Rev. Lett. 94 155504
[18] Ye J Y, Liu Y L, Wang J L, He Y 2010 Acta Phys. Sin. 59 4178 (in Chinese) [叶佳宇, 刘亚丽, 王靖林, 何垚 2010 59 4178]
[19] Li M, Li Y, Zhou Z, Shen P, Chen Z 2009 Nano Lett. 9 1944
[20] Yu D L, Chen Y H, Cao Y J, Zhang C R 2010 Acta Phys. Sin. 59 1991 (in Chinese) [于大龙, 陈玉红, 曹一杰, 张材荣 2010 59 1991]
[21] Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 J. Phys. Chem. C 111 17977
[22] Zhang H, Xiao MZ, Zhang G Y, Lu G X, Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 60 026103]
[23] Delley B 2000 J. Chem. Phys. 113 7756
[24] Grimme S 2006 J. Comput. Chem. 27 1787
[25] Liang J J 2003 Appl. Phys. A 80 173
[26] Kiran B, Kandalam A K, Jena P 2006 J. Chem. Phys. 124 224703
[27] Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B 2008 Nano Lett. 8 157
[28] Gao Y, Zeng X C 2007 J. Phys. Condens. Matter 19 386220
[29] Frisch M J et al Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)
[30] Simon S, Duran M, Dannenberg J J 1996 J. Chem. Phys. 105 11024
[31] Kubas G J 2001 J. Organomet. Chem. 635 37
[32] Yuan H K, Chen H, Kuang A L, Ahmed A S, Xiong Z H 2007 Phys. Rev. B 75 174412
[33] Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
-
[1] Wong-Foy A G, Matzger A J, Yaghi O M 2006 J. Am. Chem. Soc. 128 3494
[2] Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422
[3] Meng S, Kaxiras E, Zhang Z 2007 Nano Lett. 7 663
[4] Kim Y H, Zhao Y, Williamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102
[5] Wang L, Zhao J J, Zhou Z, Zhang S B, Chen Z F 2009 J. Comput. Chem. 30 2509
[6] Lu Q L, Luo Q Q, Jalbout A F, Wan J G, Wang G H 2009 Eur. Phys. J. D 51 219
[7] Kochnev V K, Charkin O P, Klimenko N M 2009 Russ. J. Inorg. Chem. 54 1114
[8] Lu Q L, Jalbout A F, Luo Q Q,Wan J G,Wang G H 2008 J. Chem. Phys. 128 224707
[9] Goldberg A, Yarovsky I 2007 Phys. Rev. B 75 195403
[10] Li S, Gong X 2006 Phys. Rev. B 74 045432
[11] Akutsu M, Koyasu K, Atobe J, Hosoya N, Miyajima K, Mitsui M, Nakajima A 2006 J. Phys. Chem. A 110 12073
[12] Chen G, Kawazoe Y 2007 J. Chem. Phys. 126 014703
[13] Kumar V, Bhattacharjee S, Kawazoe Y 2000 Phys. Rev. B 61 8541
[14] Lu Q L, Wan J G 2010 J. Chem. Phys. 132 224308
[15] Li F, Zhao J J, Chen Z F 2010 Nanotechnology 21 134006
[16] Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 58 8077]
[17] Zhao Y, Kim Y H, Dillon A, Heben M, Zhang S 2005 Phys. Rev. Lett. 94 155504
[18] Ye J Y, Liu Y L, Wang J L, He Y 2010 Acta Phys. Sin. 59 4178 (in Chinese) [叶佳宇, 刘亚丽, 王靖林, 何垚 2010 59 4178]
[19] Li M, Li Y, Zhou Z, Shen P, Chen Z 2009 Nano Lett. 9 1944
[20] Yu D L, Chen Y H, Cao Y J, Zhang C R 2010 Acta Phys. Sin. 59 1991 (in Chinese) [于大龙, 陈玉红, 曹一杰, 张材荣 2010 59 1991]
[21] Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 J. Phys. Chem. C 111 17977
[22] Zhang H, Xiao MZ, Zhang G Y, Lu G X, Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 60 026103]
[23] Delley B 2000 J. Chem. Phys. 113 7756
[24] Grimme S 2006 J. Comput. Chem. 27 1787
[25] Liang J J 2003 Appl. Phys. A 80 173
[26] Kiran B, Kandalam A K, Jena P 2006 J. Chem. Phys. 124 224703
[27] Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B 2008 Nano Lett. 8 157
[28] Gao Y, Zeng X C 2007 J. Phys. Condens. Matter 19 386220
[29] Frisch M J et al Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)
[30] Simon S, Duran M, Dannenberg J J 1996 J. Chem. Phys. 105 11024
[31] Kubas G J 2001 J. Organomet. Chem. 635 37
[32] Yuan H K, Chen H, Kuang A L, Ahmed A S, Xiong Z H 2007 Phys. Rev. B 75 174412
[33] Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
计量
- 文章访问数: 8039
- PDF下载量: 916
- 被引次数: 0