搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单双模连续压缩真空态及其量子统计性质

袁洪春 徐学翔

引用本文:
Citation:

单双模连续压缩真空态及其量子统计性质

袁洪春, 徐学翔

One- and two-mode successively squeezed state and its statistical properties

Yuan Hong-Chun, Xu Xue-Xiang
PDF
导出引用
  • 利用有序算符内的积分技术研究了通过双模压缩算符作用于两个单模压缩态上得到的单双模连续压缩态. 导出了单双模连续压缩算符的正规乘积形式, 并在此基础上研究了单双模连续压缩真空态的量子统计性质. 特别是利用Weyl编 序算符在相似变换下的不变性, 简洁地导出了单双模连续压缩真空态的Wigner函数. 最后, 还简单地提出了单双模连续压缩真空态的实验产生方案.
    One- and two-mode successively squeezed state, obtained through re-squeezing two single mode squeezed states by the two-mode squeezing operator, is studied in terms of the technique of integration within an ordered product (IWOP) of operators. We first derive the normally ordered form of this one- and two-mode successively squeezing operator, and then investigate the quantum statistical properties of the corresponding squeezed state. Particularly, we use the Weyl ordering invariance under a similar transformation to derive the analytical expression of its Wigner function, which seems very easy and concise. Finally, the experimental generation of one- and two-mode successively squeezed state is also proposed simply.
      通信作者: 袁洪春, yuanhch@126.com
    • 基金项目: 国家自然科学基金(批准号: 11174114)、常州工学院自然科学研究计划 (批准号: YN1106) 和江西省教育厅科学技术研究计划(批准号: GJJ12171, GJJ11390)资助的课题.
      Corresponding author: Yuan Hong-Chun, yuanhch@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174114), the Research Foundation of Changzhou Institute of Technology, China (Grant No. YN1106) and the Research Foundation of Education Department of Jiangxi Province, China (Grant Nos. GJJ12171, GJJ11390).
    [1]

    Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1

    [2]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709

    [3]

    Walls D F 1983 Nature 306 141

    [4]

    Collet M J, Walls D F 1985 Phys. Rev. A 32 2887

    [5]

    Lakshmi P A, Agarwal G S 1984 Phys. Rev. A 29 2260

    [6]

    Milburn G J, Braunstein S L 1999 Phys. Rev. A 60 937

    [7]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [8]

    Song T Q 2004 Acta Phys. Sin. 53 3358 (in Chinese) [宋同强 2004 53 3358]

    [9]

    Ban M 1999 J. Opt. B: Quantum Semiclass. Opt. 1 L9

    [10]

    He G Q, Yi Z, Zhu J, Zeng G H 2007 Acta Phys. Sin. 56 6427 (in Chinese) [何广强, 易 智, 朱 俊, 曾贵华 2007 56 6427]

    [11]

    Yi Z, He G Q, Zeng G H 2007 Acta Phys. Sin. 58 3166 (in Chinese) [易 智, 何广强, 曾 贵华 2009 58 3166]

    [12]

    Hu L Y, Fan H Y 2008 J. Opt. Soc. Am. B 25 1955

    [13]

    Sun Z H, Fan H Y 2000 Acta Phys. Sin. 49 74 (in Chinese) [孙治湖, 范洪义 2000 49 74]

    [14]

    Fan H Y 1990 Phys. Rev. A 41 1526

    [15]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661 (in Chinese) [徐学翔, 袁洪 春, 胡利云 2010 59 4661]

    [16]

    Jiang N Q, Zheng Y Z 2006 Phys. Rev. A 74 012306

    [17]

    Jiang N Q, Jing N Q, Zhang Y, Cai G C 2008 Europhys. Lett. 84 14002

    [18]

    Jiang N Q, Fan H Y 2008 Commun. Theor. Phys. 49 225

    [19]

    Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147

    [20]

    Fan H Y, Lu H L, Fan Y 2006 Ann. Phys. 321 480

    [21]

    Fan H Y, VanderLinde J 1989 Phys. Rev. A 39 1552

    [22]

    Fan H Y, Zaidi H R, Klauder J R 1987 Phys. Rev. D 35 1831

    [23]

    Lai W K, Buek V, Knight P L 1991 Phys. Rev. A 44 6043

    [24]

    Meng X G, Wang J S 2007 Acta Phys. Sin. 56 4578 (in Chinese) [孟祥国, 王继锁 2007 56 4578]

    [25]

    Lee C T 1990 Phys. Rev. A 41 1569

    [26]

    Buek V, Barranco A, Knight P L 1992 Phys. Rev. A 45 6570

    [27]

    Zhao J Q, Lu H X 2010 Acta Phys. Sin. 59 7875 (in Chinese) [赵加强, 逯怀新 2010 59 7875]

    [28]

    Lee C T 1990 Phys. Rev. A 42 1608

    [29]

    Schleich P W 2001 Quantum Optics in Phase Space (Berlin: Wiley-Vch)

    [30]

    Zhang Z M 2004 Acta Phys. Sin. 53 70 (in Chinese) [ 2004 53 70]

    [31]

    Meng X G, Wang J S, Liang B L 2007 Acta Phys. Sin. 56 2160 (in Chinese) [张智明 2004 53 70]

    [32]

    Hu L Y, Fan H Y 2009 Chin. Phys. B 18 4657

    [33]

    Xu X X, Yuan H C, Fan H Y 2011 Chin. Phys. B 20 024203

    [34]

    Fan H Y 2008 Ann. Phys. 323 500

    [35]

    Bachor H A, Ralph T C 2003 A Guide to Experiments in Quantum Optics (Berlin: Wiley-Vch)

    [36]

    Yang Y, Li F L 2009 Phys. Rev. A 80 022315 064205-7

  • [1]

    Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1

    [2]

    Loudon R, Knight P L 1987 J. Mod. Opt. 34 709

    [3]

    Walls D F 1983 Nature 306 141

    [4]

    Collet M J, Walls D F 1985 Phys. Rev. A 32 2887

    [5]

    Lakshmi P A, Agarwal G S 1984 Phys. Rev. A 29 2260

    [6]

    Milburn G J, Braunstein S L 1999 Phys. Rev. A 60 937

    [7]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302

    [8]

    Song T Q 2004 Acta Phys. Sin. 53 3358 (in Chinese) [宋同强 2004 53 3358]

    [9]

    Ban M 1999 J. Opt. B: Quantum Semiclass. Opt. 1 L9

    [10]

    He G Q, Yi Z, Zhu J, Zeng G H 2007 Acta Phys. Sin. 56 6427 (in Chinese) [何广强, 易 智, 朱 俊, 曾贵华 2007 56 6427]

    [11]

    Yi Z, He G Q, Zeng G H 2007 Acta Phys. Sin. 58 3166 (in Chinese) [易 智, 何广强, 曾 贵华 2009 58 3166]

    [12]

    Hu L Y, Fan H Y 2008 J. Opt. Soc. Am. B 25 1955

    [13]

    Sun Z H, Fan H Y 2000 Acta Phys. Sin. 49 74 (in Chinese) [孙治湖, 范洪义 2000 49 74]

    [14]

    Fan H Y 1990 Phys. Rev. A 41 1526

    [15]

    Xu X X, Yuan H C, Hu L Y 2010 Acta Phys. Sin. 59 4661 (in Chinese) [徐学翔, 袁洪 春, 胡利云 2010 59 4661]

    [16]

    Jiang N Q, Zheng Y Z 2006 Phys. Rev. A 74 012306

    [17]

    Jiang N Q, Jing N Q, Zhang Y, Cai G C 2008 Europhys. Lett. 84 14002

    [18]

    Jiang N Q, Fan H Y 2008 Commun. Theor. Phys. 49 225

    [19]

    Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147

    [20]

    Fan H Y, Lu H L, Fan Y 2006 Ann. Phys. 321 480

    [21]

    Fan H Y, VanderLinde J 1989 Phys. Rev. A 39 1552

    [22]

    Fan H Y, Zaidi H R, Klauder J R 1987 Phys. Rev. D 35 1831

    [23]

    Lai W K, Buek V, Knight P L 1991 Phys. Rev. A 44 6043

    [24]

    Meng X G, Wang J S 2007 Acta Phys. Sin. 56 4578 (in Chinese) [孟祥国, 王继锁 2007 56 4578]

    [25]

    Lee C T 1990 Phys. Rev. A 41 1569

    [26]

    Buek V, Barranco A, Knight P L 1992 Phys. Rev. A 45 6570

    [27]

    Zhao J Q, Lu H X 2010 Acta Phys. Sin. 59 7875 (in Chinese) [赵加强, 逯怀新 2010 59 7875]

    [28]

    Lee C T 1990 Phys. Rev. A 42 1608

    [29]

    Schleich P W 2001 Quantum Optics in Phase Space (Berlin: Wiley-Vch)

    [30]

    Zhang Z M 2004 Acta Phys. Sin. 53 70 (in Chinese) [ 2004 53 70]

    [31]

    Meng X G, Wang J S, Liang B L 2007 Acta Phys. Sin. 56 2160 (in Chinese) [张智明 2004 53 70]

    [32]

    Hu L Y, Fan H Y 2009 Chin. Phys. B 18 4657

    [33]

    Xu X X, Yuan H C, Fan H Y 2011 Chin. Phys. B 20 024203

    [34]

    Fan H Y 2008 Ann. Phys. 323 500

    [35]

    Bachor H A, Ralph T C 2003 A Guide to Experiments in Quantum Optics (Berlin: Wiley-Vch)

    [36]

    Yang Y, Li F L 2009 Phys. Rev. A 80 022315 064205-7

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析.  , 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 张科, 李兰兰, 任刚, 杜建明, 范洪义. 量子扩散通道中Wigner算符的演化规律.  , 2020, 69(9): 090301. doi: 10.7498/aps.69.20200106
    [3] 范洪义, 梁祖峰. 相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径.  , 2015, 64(5): 050301. doi: 10.7498/aps.64.050301
    [4] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系.  , 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [5] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [6] 贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义. 光束分离器算符的分解特性与纠缠功能.  , 2014, 63(22): 220301. doi: 10.7498/aps.63.220301
    [7] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [8] 卢道明. 三参数双模压缩粒子数态的量子特性.  , 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [9] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性.  , 2011, 60(11): 110302. doi: 10.7498/aps.60.110302
    [10] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数.  , 2011, 60(9): 090305. doi: 10.7498/aps.60.090305
    [11] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析.  , 2010, 59(10): 6806-6813. doi: 10.7498/aps.59.6806
    [12] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干.  , 2010, 59(7): 4661-4671. doi: 10.7498/aps.59.4661
    [13] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数.  , 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [14] 周南润, 龚黎华, 贾芳. 基于双模相干-纠缠态表象的算符恒等式构造法.  , 2009, 58(4): 2179-2183. doi: 10.7498/aps.58.2179
    [15] 徐世民, 李洪奇, 王继锁, 徐兴磊. 双模坐标-动量积分型投影算符及其在量子光学中的应用.  , 2009, 58(4): 2174-2178. doi: 10.7498/aps.58.2174
    [16] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数.  , 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [17] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数.  , 2005, 54(6): 2704-2709. doi: 10.7498/aps.54.2704
    [18] 张智明. 利用微脉塞重构腔场的Wigner函数.  , 2004, 53(1): 70-74. doi: 10.7498/aps.53.70
    [19] 邓文基, 刘 平, 徐 晓. 混合态的不确定关系与压缩效应.  , 2004, 53(11): 3668-3672. doi: 10.7498/aps.53.3668
    [20] 万琳, 刘素梅, 刘三秋. T-C模型中虚光子过程对光场压缩效应的影响.  , 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
计量
  • 文章访问数:  7805
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-22
  • 修回日期:  2011-06-28
  • 刊出日期:  2012-03-05

/

返回文章
返回
Baidu
map