搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无旋性前进重力波传递在均匀流中的Lagrangen解析解与试验验证Ⅱ.试验验证

陈阳益 林楚佑 李孟学 李政达

引用本文:
Citation:

无旋性前进重力波传递在均匀流中的Lagrangen解析解与试验验证Ⅱ.试验验证

陈阳益, 林楚佑, 李孟学, 李政达

The irrotational progressive gravity waves propagating on uniform currents in Lagrangian analysis and experiments Part 2. Experimental verification

Chen Yang-Yih, Lin Chu-Yu, Li Meng-Syue, Lee Cheng-Ta
PDF
导出引用
  • 针对文献[1]中的无旋性自由表面周期性规则前进重力波传递在均匀流中,本文以与前进波波向同向与反向的均匀流两种特例情况,进行试验测量,所得的波形曲线、流速分布、流体质点的运动轨迹与运动周期及其质量传输速率与Lagrange平均高程等特性,均与文献[1]中全以Lagrange方式所得的三阶解结果符合得很好.这证实本研究取定的标注流体质点的参数,正好为其在原静止水中的位置坐标值.同时亦证实波流场中由流体质点所构成的波形曲线,其波长皆同于(纯)前进波,而其传播速度为(纯)前进波波速与均匀流流速之和是具Doppler效应的;而流体质点的运动周期与其运动周期平均高程、及其质量传输速率扣掉均匀流流速等,都与(纯)前进波的相符.另外,亦揭示出流体质点的运动轨迹,在前进波波向与均匀流同向中,当流体质点在波谷断面处时沿前进波波向的流速分量为反向、零与正向时,则其形状分别为朝波向前进的扁长辐状余摆线、在波谷断面处成尖点朝下的滚轮状线与短辐形余摆线;而在前进波波向与均匀流反向中,当流体质点的质量传输速率为沿前进波波向为正向与零时,则其形状分别为朝波向前进的缩短的扁长辐形余摆线与长轴在前进波波向上椭圆形封闭曲线;而当流体质点的质量传输速率为反前进波波向,但质点在波峰断面处时沿前进波波向的流速分量分别为正向、零与反向时,则其形状分别为反波向前进的倒扁长辐形余摆线、在波峰断面处成尖点朝上的倒滚轮状线与倒短辐形余摆线.
    The quantitative experiments are made to measure the motional characteristics of water particles in the progressive gravity waves propagating on following and reversing uniform currents. The theoretical results of the third-order Lagrangian solution in Part 1[1] are shown good agreements with those measured by the experiments for the wave-form, the velocity distribution, the mass transport velocity, the particle trajectory, particle's motion period and Lagrangian mean level. It is also verified that identifying parameters of each particle is equal to the coordinates of its position in a still water. Consequentially, the wavelengths of the wave-forms constituted by the particles in the field are all equal to that of the progressive waves and their propagating speeds are the sum of the velocities of the progressive waves and the uniform current as the so-called Doppler effect is proved, but the motion periods and the Lagrangian mean levels of particles are the same as those in the progressive waves. The variations of the orbital forms of particles in the field are also revealed that the orbits like the prolate trochiod, the cycloid and the curtate trochoid are presented in the case of following uniform current as the horizontal velocity components of particles at the section of wave trough are, respectively, negative, zero and positive in the direction of the progressive waves, and that the orbits like the prolate trochoid and the ellipse are occurred in the case of reversing uniform current as the mass transport velocities of particles are, respectively, positive and zero in the direction of the progressive waves, and that the orbits like the turned prolate trochoid, the turned cycloid and the turned curtate trochiod are appeared in the case of reversing uniform current when the mass transport velocities of particles are negative and the horizontal velocity components of particles at the section of wave crest are, respectively, positive, zero and negative in the direction of the progressive waves.
    [1]

    Chen Y Y, Hsu H C, Chang H K 2012 Acta Phys. Sin. 61 034702(in Chinese)[陈阳益, 许弘莒, 张宪国 2011 61 034702]

    [2]

    Longuet-Higgins M S, Stewart R W 1960 J. Fluid Mech. 8 565

    [3]

    Longuet-Higgins M S, Stewart R W 1961 J. Fluid Mech. 10 529

    [4]

    Jonsson I G, Skougaard C, Wang J D 1970 Proc. 12th Coastal Eng. Conf.(New York: ASCE)1 489

    [5]

    Josson I G 1977 J. Hydrual. Res. 16(3)223

    [6]

    Josson I G, Brink-Kjaer O, Thomas G P 1978 J. Fluid Mech. 87 401

    [7]

    Peregrine D H 1976 Adv. Appl. Mech. 16 9

    [8]

    Thomas G P 1981 J. Fluid Mech. 110 457

    [9]

    Thomas G P 1990 J. Fluid Mech. 216 505

    [10]

    Baddour R E, Song S W 1990 Ocean Engng. 17 551

    [11]

    Chen Y Y, Juang W J 1990 Proceeding of the 12th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)p248(in Chinese)[陈阳益, 庄文杰 1990 第十二届海洋工程研讨会论文集(台湾: 台湾海洋工程学会)第248页]

    [12]

    Chang H K, Chen Y Y 1993 Harbour Technology 8 24(in Chinese)[张宪国, 陈阳益 1993 港湾技术 8 24]

    [13]

    Groeneweg J, Battjes J 2003 J. Fluid Mech. 478 325

    [14]

    Musumeci R E, Cavallo L, Foti E, Scandura P 2006 J. G. R. 111 c07019

    [15]

    Olabarrieta M, Medina P, Castanedo S 2010 Coastal Engineering 57 643

    [16]

    Morison J R, Crookes R C 1953 Tech. Memo.(U.S.: Army Corps of Engineers, Beach Erosion Board)40

    [17]

    Longuet-Higgins M S 1986 J. Fluid Mech. 173 683

    [18]

    Chen Y Y, Lin S S, Ho L S 1998 Proceeding of the 20th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)p60(in Chinese)[陈阳益, 林受勋, 何良胜 1998 第二十届海洋工程研讨会论文集(台湾: 台湾海洋工程学会)第60页]

    [19]

    Pullen J, Arnott A, Buick J M, Greated C 1998 Euro. Mech. 387

    [20]

    Chen Y Y, Hsu H C, Chen G Y 2010 Fluid Dyn. Res. 42 1

    [21]

    Davies A G, Heathershow A D 1984 J. Fluid Mech. 144 419

  • [1]

    Chen Y Y, Hsu H C, Chang H K 2012 Acta Phys. Sin. 61 034702(in Chinese)[陈阳益, 许弘莒, 张宪国 2011 61 034702]

    [2]

    Longuet-Higgins M S, Stewart R W 1960 J. Fluid Mech. 8 565

    [3]

    Longuet-Higgins M S, Stewart R W 1961 J. Fluid Mech. 10 529

    [4]

    Jonsson I G, Skougaard C, Wang J D 1970 Proc. 12th Coastal Eng. Conf.(New York: ASCE)1 489

    [5]

    Josson I G 1977 J. Hydrual. Res. 16(3)223

    [6]

    Josson I G, Brink-Kjaer O, Thomas G P 1978 J. Fluid Mech. 87 401

    [7]

    Peregrine D H 1976 Adv. Appl. Mech. 16 9

    [8]

    Thomas G P 1981 J. Fluid Mech. 110 457

    [9]

    Thomas G P 1990 J. Fluid Mech. 216 505

    [10]

    Baddour R E, Song S W 1990 Ocean Engng. 17 551

    [11]

    Chen Y Y, Juang W J 1990 Proceeding of the 12th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)p248(in Chinese)[陈阳益, 庄文杰 1990 第十二届海洋工程研讨会论文集(台湾: 台湾海洋工程学会)第248页]

    [12]

    Chang H K, Chen Y Y 1993 Harbour Technology 8 24(in Chinese)[张宪国, 陈阳益 1993 港湾技术 8 24]

    [13]

    Groeneweg J, Battjes J 2003 J. Fluid Mech. 478 325

    [14]

    Musumeci R E, Cavallo L, Foti E, Scandura P 2006 J. G. R. 111 c07019

    [15]

    Olabarrieta M, Medina P, Castanedo S 2010 Coastal Engineering 57 643

    [16]

    Morison J R, Crookes R C 1953 Tech. Memo.(U.S.: Army Corps of Engineers, Beach Erosion Board)40

    [17]

    Longuet-Higgins M S 1986 J. Fluid Mech. 173 683

    [18]

    Chen Y Y, Lin S S, Ho L S 1998 Proceeding of the 20th Ocean Engineering Conference in Taiwan(Taiwan: The Taiwan Society of Ocean Engineering)p60(in Chinese)[陈阳益, 林受勋, 何良胜 1998 第二十届海洋工程研讨会论文集(台湾: 台湾海洋工程学会)第60页]

    [19]

    Pullen J, Arnott A, Buick J M, Greated C 1998 Euro. Mech. 387

    [20]

    Chen Y Y, Hsu H C, Chen G Y 2010 Fluid Dyn. Res. 42 1

    [21]

    Davies A G, Heathershow A D 1984 J. Fluid Mech. 144 419

  • [1] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用.  , 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [2] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211430
    [3] 高德洋, 高大治, 迟静, 王良, 宋文华. Doppler-warping变换及其应用在声学目标运动速度估计.  , 2021, 70(12): 124302. doi: 10.7498/aps.70.20201653
    [4] 侯旺, 于起峰, 雷志辉, 刘晓春. 基于分块速度域改进迭代运动目标检测算法的红外弱小目标检测.  , 2014, 63(7): 074208. doi: 10.7498/aps.63.074208
    [5] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构.  , 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [6] 陈丽娟, 鲁世平. 地球磁层电磁场中粒子引导中心漂移运动模型的周期轨.  , 2014, 63(19): 190202. doi: 10.7498/aps.63.190202
    [7] 陈阳益, 许弘莒, 张宪国. 无旋性前进重力波传递在均匀流中的Lagrange解析解与试验验证Ⅰ.理论解析解.  , 2012, 61(3): 034702. doi: 10.7498/aps.61.034702
    [8] 张文涛, 朱保华, 熊显名, 黄静. 原子运动速度对激光驻波场作用下纳米光栅沉积特性的影响.  , 2011, 60(6): 063202. doi: 10.7498/aps.60.063202
    [9] 葛红霞, 程荣军, 李志鹏. 考虑双速度差效应的耦合映射跟驰模型.  , 2011, 60(8): 080508. doi: 10.7498/aps.60.080508
    [10] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应.  , 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [11] 丁光涛. 经典力学中加速度相关的Lagrange函数.  , 2009, 58(6): 3620-3624. doi: 10.7498/aps.58.3620
    [12] 丁光涛. 计算加速度相关Lagrange函数的方法.  , 2009, 58(10): 6725-6728. doi: 10.7498/aps.58.6725
    [13] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移.  , 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [14] 鲍德松, 张训生, 徐光磊, 潘正权, 唐孝威, 陆坤权. 平面颗粒流的瓶颈效应及其与速度的关系.  , 2003, 52(2): 401-404. doi: 10.7498/aps.52.401
    [15] 贺凯芬, A. SALAT. 非线性漂移波在行波扰动下的绕数分岔与超级结构.  , 1990, 39(2): 204-211. doi: 10.7498/aps.39.204
    [16] 张承福. 离子有限拉摩半径效应对低频漂移波本征模的影响.  , 1980, 29(6): 778-787. doi: 10.7498/aps.29.778
    [17] 张承福. 低频漂移波与赝经典扩散.  , 1980, 29(2): 214-224. doi: 10.7498/aps.29.214
    [18] 洪晶, 叶以正. 硅中位错运动速度.  , 1965, 21(12): 1968-1976. doi: 10.7498/aps.21.1968
    [19] 胡宁. 一排等距平行直杆后及方格后激流平均速度及温度之分布.  , 1944, 5(1): 30-48. doi: 10.7498/aps.5.30
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布.  , 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  6549
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-31
  • 修回日期:  2011-05-16
  • 刊出日期:  2012-03-15

/

返回文章
返回
Baidu
map