搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响

许涌 蔡建旺

引用本文:
Citation:

几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响

许涌, 蔡建旺

Effects of interfacial Ru, Pd, Ag, and Au insertion layers on the anisotropic magnetoresistance in Ta/NiFe/Ta trilayers

Xu Yong, Cai Jian-Wang
PDF
导出引用
  • 文章中,通过磁控溅射制备了界面处插入4d,5d元素薄层(包括Ru,Pd,Ag和Au)的Ta/NiFe/Ta多层膜,并对它们的磁输运和磁性以及微结构进行了测试和表征.结果显示,Pd和Pt一样界面效应显著,能有效地提高NiFe薄膜退火前后的AMR比值,并抑制磁性死层.表面能比较小、熔点相对低的插层材料Ag,Au在退火过程中容易通过晶界扩散,强烈破坏其AMR性能.对于熔点高、表面能比较大的插层材料如Ru,磁性死层同样得到了抑制,NiFe薄膜的温度稳定性也可以得到提高.结果表明界面插层从界面电子自旋-轨道散射、界面死层和界面原子扩散等方面深刻影响NiFe薄膜的AMR.
    Ta/NiFe/Ta trilayers are commonly used in various commercial sensors based on anisotropic magnetoresistive(AMR) effect. Technologically it is desirable to reduce NiFe film thickness to diminish the demagnetization effect for the smaller and smaller devices. However, the AMR ratio of thin NiFe film decreases rapidly with film thickness decreasing when the NiFe film is thinner than 20 nm. Our previous work revealed that the AMR ratio and the thermal stability of Ta/NiFe/Ta trilayers can be significantly improved through interfacial Pt addition due to the enhanced interfacial spin-orbit scattering and the suppressed magnetic dead layers. In this paper, 4d and 5d elements including Ru, Pd, Ag and Au, are also introduced at the interfaces of Ta/NiFe/Ta films fabricated by DC magnetron sputtering. It is found that the insertion of interfacial Pd layers leads to an appreciable AMR enhancement in the as-sputtered state and after annealing. Insertion layers of Ag and Au with small surface energy and relatively low melting point suffer from thermal interdiffusion and seriously deteriorate the AMR of the annealed films, whereas Ru insertion layers exhibit improved thermal stability. The present results indicate that the AMR of Ta/NiFe/Ta films can be notably affected by the extremely thin interfacial insertion layers due to the changed interfacial spin-orbit scattering, magnetic dead layer and atomic interdiffusion.
    • 基金项目: 国家自然科学基金(批准号:10874216,50831002)资助的课题.
    [1]

    McGuire T R, Potter R I 1975 IEEE Trans. Magn. 11 1018

    [2]

    Wu D, Wei P, Johnston-Halperin E, Awschalom D D, Shi J 2008 Phys. Rev. B 77 125320

    [3]
    [4]
    [5]

    Rushforth A W, Vborn K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vaek P, Novk V, Olejnk K, Sinova J, Jungwirth T, Gallagher B L 2007 Phys. Rev. Lett. 99 147207

    [6]

    Li P, Jiang E Y, Bai H L 2010 Appl. Phys. Lett. 96 092502

    [7]
    [8]
    [9]

    Ramos R, Arora S K, Shvets I V 2008 Phys. Rev. B 78 214402

    [10]

    Bibes M, Laukhin V, Valencia S, Martinez B, Fontcuberta J, Gorbenko O Y, Kaul A R, Martinez J L 2005 J. Phys.: Condens. Matter 17 2733

    [11]
    [12]

    Bibes M, Martnez B, Fontcuberta J, Trtik V, Ferrater C, Snchez F, Varela M, Hiergeist R, Steenbeck K 2000 J. Magn. Magn. Mater. 211 206

    [13]
    [14]

    Tsunoda M, Komasaki Y, Kokado S, Isogami S, Chen C C, Takahashi M 2009 Appl. Phys. Exp. 2 083001

    [15]
    [16]
    [17]

    Yau J B, Hong X, Posadas A, Ahn C H, Gao W, Altman E, Bason Y, Klein L, Sidorov M, Krivokapic Z 2007 J. Appl. Phys. 102 103901

    [18]

    Li R W, Wang H, Wang X, Yu X Z, Matsui Y, Cheng Z H, Shen B G, Plummere E W, Zhang J 2008 Proc. Natl. Acad. Sci. U.S.A. 106 14224

    [19]
    [20]
    [21]

    Egilmez M, Patterson R, Chow K H, Jung J 2007 Appl. Phys. Lett. 90 232506

    [22]
    [23]

    Jiang H W, Wang A L, Zheng W 2005 Acta Phys. Sin. 54 2338 (in Chinese) [姜宏伟、王艾玲、郑 鹉 2005 54 2338]

    [24]
    [25]

    Miller B H, Stojkovi ć B P, Dahlberg E D 1999 Phys. Lett. A 256 294

    [26]
    [27]

    Ingvarsson S, Xiao G, Parkin S S P, Gallagher W J 2002 J. Magn. Magn. Mater. 251 202

    [28]
    [29]

    Lin T, Mauri D, York B, Rice P M 2004 Appl. Phys. Lett. 84 386

    [30]
    [31]

    Kowalewski M, Butler W H, Moghadam N, Stock G M, Schulthess T C, Song K J, Thompson J R, Arrott A S, Zhu T, Drewes J, Katti R R, McClure M T, Escorcia O 2000 J. Appl. Phys. 87 5732

    [32]
    [33]

    Miyazaki T, Ajima T 1989 J. Magn. Magn. Mater. 81 91

    [34]

    Liu Y F, Cai J W, Sun L 2010 Appl. Phys. Lett. 96 092509

    [35]
    [36]

    Kitada M, Yamamoto H, Tsuchiya H 1984 Thin Solid Films 122 173

    [37]
    [38]

    Mezey L Z, Giber J 1982 Jpn. J. Appl. Phys. 21 1569

    [39]
    [40]
    [41]

    Egelhoff W F, Chen P J, Powell C J, Stiles M D, McMichael R D, Lin C L, Sivertsen J M, Judy J H, Takano K, Berkowitz A E 1996 J. Appl. Phys. 80 5183

    [42]
    [43]

    Kitakami O, Shimada Y, Oikawa K, Daimon H, Fukamichi K 2001 Appl. Phys. Lett. 78 1104

    [44]
    [45]

    Nagura H, Saito K, Takanashi K, Fujimori H 2000 J. Magn. Magn. Mater. 212 53

    [46]

    Yu G H, Zhao H C, Li M H, Zhu F W, Lai W Y 2002 Appl. Phys. Lett. 80 455

    [47]
    [48]

    Moghadam N Y, Stocks G M 2005 Phys. Rev. B 71 134421

    [49]
  • [1]

    McGuire T R, Potter R I 1975 IEEE Trans. Magn. 11 1018

    [2]

    Wu D, Wei P, Johnston-Halperin E, Awschalom D D, Shi J 2008 Phys. Rev. B 77 125320

    [3]
    [4]
    [5]

    Rushforth A W, Vborn K, King C S, Edmonds K W, Campion R P, Foxon C T, Wunderlich J, Irvine A C, Vaek P, Novk V, Olejnk K, Sinova J, Jungwirth T, Gallagher B L 2007 Phys. Rev. Lett. 99 147207

    [6]

    Li P, Jiang E Y, Bai H L 2010 Appl. Phys. Lett. 96 092502

    [7]
    [8]
    [9]

    Ramos R, Arora S K, Shvets I V 2008 Phys. Rev. B 78 214402

    [10]

    Bibes M, Laukhin V, Valencia S, Martinez B, Fontcuberta J, Gorbenko O Y, Kaul A R, Martinez J L 2005 J. Phys.: Condens. Matter 17 2733

    [11]
    [12]

    Bibes M, Martnez B, Fontcuberta J, Trtik V, Ferrater C, Snchez F, Varela M, Hiergeist R, Steenbeck K 2000 J. Magn. Magn. Mater. 211 206

    [13]
    [14]

    Tsunoda M, Komasaki Y, Kokado S, Isogami S, Chen C C, Takahashi M 2009 Appl. Phys. Exp. 2 083001

    [15]
    [16]
    [17]

    Yau J B, Hong X, Posadas A, Ahn C H, Gao W, Altman E, Bason Y, Klein L, Sidorov M, Krivokapic Z 2007 J. Appl. Phys. 102 103901

    [18]

    Li R W, Wang H, Wang X, Yu X Z, Matsui Y, Cheng Z H, Shen B G, Plummere E W, Zhang J 2008 Proc. Natl. Acad. Sci. U.S.A. 106 14224

    [19]
    [20]
    [21]

    Egilmez M, Patterson R, Chow K H, Jung J 2007 Appl. Phys. Lett. 90 232506

    [22]
    [23]

    Jiang H W, Wang A L, Zheng W 2005 Acta Phys. Sin. 54 2338 (in Chinese) [姜宏伟、王艾玲、郑 鹉 2005 54 2338]

    [24]
    [25]

    Miller B H, Stojkovi ć B P, Dahlberg E D 1999 Phys. Lett. A 256 294

    [26]
    [27]

    Ingvarsson S, Xiao G, Parkin S S P, Gallagher W J 2002 J. Magn. Magn. Mater. 251 202

    [28]
    [29]

    Lin T, Mauri D, York B, Rice P M 2004 Appl. Phys. Lett. 84 386

    [30]
    [31]

    Kowalewski M, Butler W H, Moghadam N, Stock G M, Schulthess T C, Song K J, Thompson J R, Arrott A S, Zhu T, Drewes J, Katti R R, McClure M T, Escorcia O 2000 J. Appl. Phys. 87 5732

    [32]
    [33]

    Miyazaki T, Ajima T 1989 J. Magn. Magn. Mater. 81 91

    [34]

    Liu Y F, Cai J W, Sun L 2010 Appl. Phys. Lett. 96 092509

    [35]
    [36]

    Kitada M, Yamamoto H, Tsuchiya H 1984 Thin Solid Films 122 173

    [37]
    [38]

    Mezey L Z, Giber J 1982 Jpn. J. Appl. Phys. 21 1569

    [39]
    [40]
    [41]

    Egelhoff W F, Chen P J, Powell C J, Stiles M D, McMichael R D, Lin C L, Sivertsen J M, Judy J H, Takano K, Berkowitz A E 1996 J. Appl. Phys. 80 5183

    [42]
    [43]

    Kitakami O, Shimada Y, Oikawa K, Daimon H, Fukamichi K 2001 Appl. Phys. Lett. 78 1104

    [44]
    [45]

    Nagura H, Saito K, Takanashi K, Fujimori H 2000 J. Magn. Magn. Mater. 212 53

    [46]

    Yu G H, Zhao H C, Li M H, Zhu F W, Lai W Y 2002 Appl. Phys. Lett. 80 455

    [47]
    [48]

    Moghadam N Y, Stocks G M 2005 Phys. Rev. B 71 134421

    [49]
  • [1] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应.  , 2024, 73(23): . doi: 10.7498/aps.20241155
    [2] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应*.  , 2024, 73(23): 236801. doi: 10.7498/aps.73.20241155
    [3] 谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛. Mn3Sn薄膜磁相变的输运表征.  , 2024, 73(6): 067501. doi: 10.7498/aps.73.20231766
    [4] 息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑. LaAlO3/SrTiO3界面增强光伏效应.  , 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [5] 陈东, 余本海. 外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性.  , 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [6] 张龙艳, 徐进良, 雷俊鹏. 纳米尺度下气泡核化生长的分子动力学研究.  , 2018, 67(23): 234702. doi: 10.7498/aps.67.20180993
    [7] 包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser. 单晶CeB6发射性能及磁电阻各向异性研究.  , 2017, 66(18): 186102. doi: 10.7498/aps.66.186102
    [8] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响.  , 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [9] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法.  , 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [10] 李金才, 马自辉, 彭宇行, 黄斌. 基于图像熵的各向异性扩散相干斑噪声抑制.  , 2013, 62(9): 099501. doi: 10.7498/aps.62.099501
    [11] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质.  , 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [12] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展.  , 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [13] 张先明, 杨立红, 吴永全, 沈 通, 郑少波, 蒋国昌. 一种描述金属界面原子扩散的加速分子动力学方法.  , 2008, 57(4): 2392-2398. doi: 10.7498/aps.57.2392
    [14] 张丽娇, 蔡建旺, 孟凡斌, 李养贤. 缓冲层Ta对FePt薄膜L10有序相转变及矫顽力的影响.  , 2006, 55(1): 450-455. doi: 10.7498/aps.55.450
    [15] 姜宏伟, 王艾玲, 郑 鹉. 自旋阀中的各向异性磁电阻效应.  , 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [16] 缪智武, 丁建文, 颜晓红, 唐娜斯. 畸变对hopping电导的影响:ThueMorse纳米结构模型.  , 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [17] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响.  , 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
    [18] 陈慧余, 罗有泉, 朱弘, 温琳清. 81NiFe/Cr多层膜磁电阻单向各向异性与交换耦合.  , 1994, 43(7): 1185-1191. doi: 10.7498/aps.43.1185
    [19] 冯跃新, 冯昌京, 刘申之. 各向异性扩散控制聚集集团的豪斯道夫维数.  , 1992, 41(1): 1-9. doi: 10.7498/aps.41.1
    [20] 余江, 胡岗. 各向异性扩散DLA的标度性质.  , 1989, 38(2): 202-208. doi: 10.7498/aps.38.202
计量
  • 文章访问数:  6821
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-25
  • 修回日期:  2011-05-04
  • 刊出日期:  2011-11-15

/

返回文章
返回
Baidu
map