-
A new radial three-cavity structure of the coaxial virtual cathode oscillator is proposed and studied numerically in this paper. Using the radial three-cavity structure, the beam-wave conversion efficiency is enhanced by modulating the electric field in the beam-wave interaction area, while the resonator composed of the radial three-cavity configuration and the mesh anode helps restrain mode competition effectively . And then the coaxial extraction structure benefits the energy extraction, and it can also absorb the used electrons entering into the drifting tube. Therefore, this new kind of virtual cathode oscillator can achieve a high output power. With an electron beam of 50 kA at 400 kV, a peak power of about 6 GW is achieved by simulation at 4.5 GHz. The mean power reaches 3.1 GW and the beam-wave conversion efficiency is about 15%.
-
Keywords:
- high power microwave /
- coaxial virtual cathode oscillator /
- particle-in-cell simulation /
- beam-wave conversion efficiency
[1] Luo X, Liao C, Meng F B 2006 The 7th International Symposium on Antennas, Propagation, and EM Theory (Beijing: IEEE) p1
[2] [3] Mller C, Elfsberg M, Larssonsten A, Nyholm E 2010 IEEE Trans. Plasma Sci. 38 1318
[4] [5] Xing Q Z, Wang D, Huang F, Deng J K 2006 IEEE Trans. Plasma Sci. 34 584
[6] Xing Q Z, Wu J, Zheng S X, Tang C X 2009 IEEE Trans. Plasma Sci. 37 298
[7] [8] Biswas D, Kumar R 2010 IEEE Trans. Plasma Sci. 38 1313
[9] [10] [11] Chen X D, Toh W K, Peter A 2004 IEEE Trans. Plasma Sci. 32 1191
[12] [13] Song K B, Lim J E, Seo Y, Choi E H 2009 IEEE Trans. Plasma Sci. 37 304
[14] [15] Luo X, Liao C, Meng F B, Zhang Y J 2006 Acta Phys. Sin. 55 5774 (in Chinese)[罗 雄、 廖 成、 孟凡宝、 张运俭 2006 55 5774]
[16] Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵 浩、 刘国治 2001 50 2387]
[17] [18] Langmuir I, Blodgett K B 1923 Phys. Rev. 21 419
[19] [20] Lin M C, Chang P C 2008 IEEE International Vacuum Electronics Conference (Piscataway: IEEE) p213
[21] [22] [23] Yu D L, Wang G, Liu Y Z, Wen J H, Qiu J 2006 Chin. Phys. B 15 266
[24] [25] Wang C L, Wu J, Lin J T 2003 Chin. Phys. B 12 1120
-
[1] Luo X, Liao C, Meng F B 2006 The 7th International Symposium on Antennas, Propagation, and EM Theory (Beijing: IEEE) p1
[2] [3] Mller C, Elfsberg M, Larssonsten A, Nyholm E 2010 IEEE Trans. Plasma Sci. 38 1318
[4] [5] Xing Q Z, Wang D, Huang F, Deng J K 2006 IEEE Trans. Plasma Sci. 34 584
[6] Xing Q Z, Wu J, Zheng S X, Tang C X 2009 IEEE Trans. Plasma Sci. 37 298
[7] [8] Biswas D, Kumar R 2010 IEEE Trans. Plasma Sci. 38 1313
[9] [10] [11] Chen X D, Toh W K, Peter A 2004 IEEE Trans. Plasma Sci. 32 1191
[12] [13] Song K B, Lim J E, Seo Y, Choi E H 2009 IEEE Trans. Plasma Sci. 37 304
[14] [15] Luo X, Liao C, Meng F B, Zhang Y J 2006 Acta Phys. Sin. 55 5774 (in Chinese)[罗 雄、 廖 成、 孟凡宝、 张运俭 2006 55 5774]
[16] Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵 浩、 刘国治 2001 50 2387]
[17] [18] Langmuir I, Blodgett K B 1923 Phys. Rev. 21 419
[19] [20] Lin M C, Chang P C 2008 IEEE International Vacuum Electronics Conference (Piscataway: IEEE) p213
[21] [22] [23] Yu D L, Wang G, Liu Y Z, Wen J H, Qiu J 2006 Chin. Phys. B 15 266
[24] [25] Wang C L, Wu J, Lin J T 2003 Chin. Phys. B 12 1120
计量
- 文章访问数: 7316
- PDF下载量: 710
- 被引次数: 0