-
The five low-lying configurations of CH3C(O)OSSOC(O)CH3 are studied by ab initio calculations by B3LYP, MP3 and MP4 methods with Aug-cc-pVDZ basis set. Their rotational constants and dipole moments of these five configurations are determined. The vertical ionization energies of the configurations, calculated with electron propagator theory in the P3/6-311++G(2d,2p) approximation, are in agreement with the experimental data from photoelectron spectroscopy. The relative energies of the configurations and the comparison between the simulated and the experimental photoelectron spectra demonstrate that there are at least two configurations of CH3C(O)OSSOC(O)CH3 in the gas-phase experiments. The geometrical parameters of five lowest-lying configurations are optimized in the cationic state and compared with those of the neutral configuration. Remarkable structural relaxations after ionization are found, especially for the dihedral angles D(C2O4S5S10) and D(O4S5S10O9).
-
Keywords:
- conformer /
- ionization energy /
- relative energy /
- photoelectron spectra
[1] Lengfeld F 1895 Chem. Ber. 28 449
[2] Schmidt H, Steudel R, Sülzle D, Schwarz H 1992 Inorg. Chem. 31 941 \
[3] Miaskiewicz K, Steudel R 1991 J. Chem. Soc., Dalton Trans. 2395
[4] Gleiter R, Hyla-Kryspin I, Schmidt H, Steudel R 1993 Chem. Ber. 126 2363
[5] Koritsanszky T, Buschmann J, Luger P, Schmidt H, Steudel R 1994 J. Phys.Chem. 98 5416
[6] Steudel R, Schmidt H, Baumeister E, Oberhammer H, Koritsanszky T 1995 J. Phys. Chem. 99 8987.
[7] Zeng X Q, Ge M F, Sun Z, Wang D X 2006 J. Phys. Chem. A 110 5685
[8] Du L, Yao L, Ge M F 2007 J. Phys. Chem. A 111 11787
[9] Ortiz J V 1999 Adv. Quantum Chem. 35 33
[10] Tian S X 2005 J. Chem Phys. 123 244310
[11] Tian S X, Yang J 2006 J. Angew. Chem. Int. Ed. 45 2069
[12] Wang K D, Shan X, Chen X J 2009 J. Mol. Struct: (THEOCHEM) 909 91
[13] Frisch M J et al 2003 Gaussian 03, Revision B.01, Gaussian Inc., Pittsburgh, PA
[14] Pople J A, Seegar R, Krishnan R 1977 Int. J. Quantum. Chem. S11 149
[15] Krishnan R, Frish M J, Pople J A 1980 J. Chem. Phys. 72 4244
[16] Peterson K A, Woon D E, Duning T H 1980 J.Chem. Phys. 100 7410
[17] Ortiz J V 1996 J. Chem.Phys. 104 7599
[18] Stepanian S, Reva I, Radchenko E, Rosado M, Duarte M S, Fausto R, Adamowicz L 1998 J. Phys. Chem. A 102 1041
[19] Stepanian S, Reva I, Radchenko E, Adamowicz L 1998 J. Phys. Chem. A 102 4623
[20] Powis I, Rennie E E, Hergenhahn U, Kugeler O, Bussy-Socrate R 2003 J. Phys. Chem. A. 107 25
[21] Wang K D, Ma P F, Shan X 2011 Chin. Phys. B 20 033102
-
[1] Lengfeld F 1895 Chem. Ber. 28 449
[2] Schmidt H, Steudel R, Sülzle D, Schwarz H 1992 Inorg. Chem. 31 941 \
[3] Miaskiewicz K, Steudel R 1991 J. Chem. Soc., Dalton Trans. 2395
[4] Gleiter R, Hyla-Kryspin I, Schmidt H, Steudel R 1993 Chem. Ber. 126 2363
[5] Koritsanszky T, Buschmann J, Luger P, Schmidt H, Steudel R 1994 J. Phys.Chem. 98 5416
[6] Steudel R, Schmidt H, Baumeister E, Oberhammer H, Koritsanszky T 1995 J. Phys. Chem. 99 8987.
[7] Zeng X Q, Ge M F, Sun Z, Wang D X 2006 J. Phys. Chem. A 110 5685
[8] Du L, Yao L, Ge M F 2007 J. Phys. Chem. A 111 11787
[9] Ortiz J V 1999 Adv. Quantum Chem. 35 33
[10] Tian S X 2005 J. Chem Phys. 123 244310
[11] Tian S X, Yang J 2006 J. Angew. Chem. Int. Ed. 45 2069
[12] Wang K D, Shan X, Chen X J 2009 J. Mol. Struct: (THEOCHEM) 909 91
[13] Frisch M J et al 2003 Gaussian 03, Revision B.01, Gaussian Inc., Pittsburgh, PA
[14] Pople J A, Seegar R, Krishnan R 1977 Int. J. Quantum. Chem. S11 149
[15] Krishnan R, Frish M J, Pople J A 1980 J. Chem. Phys. 72 4244
[16] Peterson K A, Woon D E, Duning T H 1980 J.Chem. Phys. 100 7410
[17] Ortiz J V 1996 J. Chem.Phys. 104 7599
[18] Stepanian S, Reva I, Radchenko E, Rosado M, Duarte M S, Fausto R, Adamowicz L 1998 J. Phys. Chem. A 102 1041
[19] Stepanian S, Reva I, Radchenko E, Adamowicz L 1998 J. Phys. Chem. A 102 4623
[20] Powis I, Rennie E E, Hergenhahn U, Kugeler O, Bussy-Socrate R 2003 J. Phys. Chem. A. 107 25
[21] Wang K D, Ma P F, Shan X 2011 Chin. Phys. B 20 033102
计量
- 文章访问数: 7844
- PDF下载量: 724
- 被引次数: 0