-
采用平衡分子动力学方法及Buckingham势研究了金红石型TiO2薄膜与闪锌矿型ZnO薄膜构筑的纳米薄膜界面沿晶面[0001](z轴方向)的热导率.通过优化分子模拟初始条件中的截断半径rc和时间步后,计算并分析了平衡温度、薄膜厚度、薄膜截面大小对热导率的影响.研究表明,薄膜热导率受薄膜温度和厚度的影响很大,当温度由300 K升高600 K时,薄膜的热导率逐渐减小;当薄膜厚度由1.8 nm增大到5 nm时,热导率会逐渐增大;并在此基础
-
关键词:
- 热导率 /
- 分子动力学 /
- TiO2/ZnO纳米薄膜界面 /
- 数值模拟
In the paper, the equilibrium molecular dynamics and Buckingham potential function are used to investigate the thermal conductivity of TiO2/ZnO nano-film interface along to [0001](z-axis). The effects of the equilibrium temperature, the thickness and the cross section of the nano-film interface on the thermal conductivity of TiO2/ZnO are investigated by optimizing the cut-off radius(rc)and the time step for initial condition of molecular dynamics. The results indicate that the thermal conductivity of TiO2/ZnO nano-film interface decreases with temperature increasing from 300 K to 600 K, and increases with film thickness increasing from 1.8 to 5 nm. Finally, the relationship between the thermal conductivity and the thickness of TiO2/ZnO nano-film interface is discussed.-
Keywords:
- thermal conductivity /
- molecular dynamics /
- TiO2/ZnO nano-film interface /
- numerical simulation
[1] Allara D L 2005 Nature 437 638
[2] Chou F C, Lukes J R, Liang X G 1999 J. Heat Transfer. 10 141
[3] Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 55 1]
[4] Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾 明、赖延清、田忠良、刘业翔 2009 58 1139]
[5] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 58 7809]
[6] Kulkarni A J, Zhou M 2006 Appl. Phys. Lett. 88 141921
[7] Hegedus P J, Abramson A R 2006 Heat Mass Transfer. 49 4921
[8] Liang X G, Sun L 2005 Microscale Thermophys. Eng. 9 295
[9] Volz S G, Saulnier J B 2000 Microelectron. J. 31 815
[10] Yang P, Liao N B 2008 Appl. Phys. A 92 329
[11] Yang P, Liao N B 2008 J. Thermophys Heat Transfer 22 581
[12] Zhong Z R, Wang X W, Xu J 2004 Numer. Heat Transfer B 45 429
[13] Schelling P K, Phillpot S R, Keblinski P K 2002 Phys. Rev. B 65 144306
[14] Sinnott S B, Dickey E C 2003 Mater. Sci. Eng. R 43 1
[15] Wunderlich W 1998 Phys. Stat. Sol. A 170 99
[16] Naicker P K, Cummings P T, Zhang H Z, Banfield J F 2005 J. Phys. Chem. B 109 15243
[17] Sergey V D, Nobuhiro Y, Yutaka K 2004 Acta Mater. 52 1959
[18] White A 2000 Intermolecular Potentials of Mixed System: Testing the Lorentz-Berthelot Mixing Rules With Ab Initio calculations (Melbourne Victoria : DSTO Aeronautical and Maritime Research Laboratory) p1
[19] Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transfer. 50 3977
[20] Kim D J, Kim D S, Cho S 2004 Int. J. Thermophys. 25 281
[21] Abramson A R, Tien C L, Majumdar A 2002 J. Heat Transfer. 124 963
-
[1] Allara D L 2005 Nature 437 638
[2] Chou F C, Lukes J R, Liang X G 1999 J. Heat Transfer. 10 141
[3] Wu G Q, Kong X R, Sun Z W, Wang Y H 2006 Acta Phys. Sin. 55 1 (in Chinese) [吴国强、孔宪仁、孙兆伟、王亚辉 2006 55 1]
[4] Jia M, Lai Y Q, Tian Z L, Liu Y X 2009 Acta Phys. Sin. 58 1139 (in Chinese) [贾 明、赖延清、田忠良、刘业翔 2009 58 1139]
[5] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文、曹炳阳、过增元 2009 58 7809]
[6] Kulkarni A J, Zhou M 2006 Appl. Phys. Lett. 88 141921
[7] Hegedus P J, Abramson A R 2006 Heat Mass Transfer. 49 4921
[8] Liang X G, Sun L 2005 Microscale Thermophys. Eng. 9 295
[9] Volz S G, Saulnier J B 2000 Microelectron. J. 31 815
[10] Yang P, Liao N B 2008 Appl. Phys. A 92 329
[11] Yang P, Liao N B 2008 J. Thermophys Heat Transfer 22 581
[12] Zhong Z R, Wang X W, Xu J 2004 Numer. Heat Transfer B 45 429
[13] Schelling P K, Phillpot S R, Keblinski P K 2002 Phys. Rev. B 65 144306
[14] Sinnott S B, Dickey E C 2003 Mater. Sci. Eng. R 43 1
[15] Wunderlich W 1998 Phys. Stat. Sol. A 170 99
[16] Naicker P K, Cummings P T, Zhang H Z, Banfield J F 2005 J. Phys. Chem. B 109 15243
[17] Sergey V D, Nobuhiro Y, Yutaka K 2004 Acta Mater. 52 1959
[18] White A 2000 Intermolecular Potentials of Mixed System: Testing the Lorentz-Berthelot Mixing Rules With Ab Initio calculations (Melbourne Victoria : DSTO Aeronautical and Maritime Research Laboratory) p1
[19] Stevens R J, Zhigilei L V, Norris P M 2007 Int. J. Heat Mass Transfer. 50 3977
[20] Kim D J, Kim D S, Cho S 2004 Int. J. Thermophys. 25 281
[21] Abramson A R, Tien C L, Majumdar A 2002 J. Heat Transfer. 124 963
计量
- 文章访问数: 10292
- PDF下载量: 928
- 被引次数: 0