搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机扰动下一般混沌系统的H∞同步

涂俐兰 柯超 丁咏梅

引用本文:
Citation:

随机扰动下一般混沌系统的H∞同步

涂俐兰, 柯超, 丁咏梅

H∞ synchronization of general chaotic systems with random perturbations

Tu Li-Lan, Ke Chao, Ding Yong-Mei
PDF
导出引用
  • 本文对随机扰动下的一般混沌系统进行了H∞控制同步研究,其中扰动是布朗运动随机过程.基于随机李雅普诺夫稳定性理论、线性矩阵不等式、It公式以及H∞控制方法,通过设置控制器,从理论上提出了驱动系统和随机扰动下的响应系统的H∞渐近同步的新标准,这些标准形式简单且易于用Matlab实现.最后的数值模拟表明提出的理论结果的正确性和有效性.
    In this paper, the H∞ synchronization of general chaotic systems with random perturbations is investigated, in which perturbation is a random process of Brownian motion. Based on stochastic Lyapunov stability theory, linear matrix inequalities, and It formula and H∞ control method combined with feedback control laws, some new asymptotic synchronization schemes are established which guarantee robust stochastical mean square asymptotical synchronization for drive system and noise-perturbed response system, as well as achieving a prescribed stochastic robust H∞ performance level. These schemes are in a simple form and easy to work with Matlab. Finally, simulations show that the proposed results are correct and effective.
    • 基金项目: 国家自然科学基金 (批准号:60904060),冶金工业过程系统科学湖北省重点实验室开放基金 (批准号:C201010) 资助的课题.
    [1]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Lett. 64 1196

    [2]

    Pecora L M, Carroll T L 1990 Phys.Rec.Let. 64 821

    [3]

    Tu L L, Lu J A 2005 Chin. Phys. 14 1755

    [4]

    Cai G L, Tan Z M, Zhou W H, Tu W T 2007 Acta Phys. Sin. 56 6230 (in Chinese) [蔡国梁、谭振梅、周维怀、涂文桃 2007 56 6230]

    [5]

    Gong L H 2005 Acta Phys. Sin. 54 3502 (in Chinese) [龚礼华 2005 54 3502]

    [6]

    Zhang H B, Yu Y B, Zhang J 2010 Chin. Phys. B 19 080509-1

    [7]

    Chen G R, Lv J H 2003 Dynamics analysis, control and synchronization of Lorenz system family (Beijing: Science Press) p2 (in Chinese) [陈关荣、吕金虎 2003 Lorenz系统族的动力学分析、控制与同步 (北京: 科学出版社) 第2页]

    [8]

    Chen G, Dong X 1998 From chaos to order:Methodologies, Perspectives and Application (Singapore: World Scientifi) p4

    [9]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [10]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. On Circuits & Systems-Ⅰ 33 1072

    [11]

    Chen G R, Ueta T 1999 Int. J. of Bifur Chaos 9 1465

    [12]

    Lü J H, Chen G R 2002 Int. J. of Bifur Chaos 12 659

    [13]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitons and Fractals 22 1031

    [14]

    Wu X J, Wang X Y 2006 Acta Phys. Sin. 55 6261 (in Chinese) [武相军、王兴元 2006 55 6261]

    [15]

    Liu Y Z, Jiang C S, Lin C S 2008 Acta Phys. Sin. 57 6808 (in Chinese) [刘扬正、姜长生、林长圣 2008 57 6808]

    [16]

    Chen G P, Hao J B 2008 Communications Technology 41 230 (in Chinese)[陈光平、郝加波 2008 通信技术 41 230]

    [17]

    Chen A M, Lu J A, Lv J H 2006 Physics A 364 103

    [18]

    Zames G 1981 IEEE Trans. Automatic Control 26 301

    [19]

    Wei R, Wang X Y 2004 Acta Phys. Sin. 53 3298 (in Chinese) [魏 荣、王行愚 2004 53 3298]

    [20]

    Yan J J 2004 Chaos, Solitons and Fractals 21 283

    [21]

    Hou Y Y, Liao T L, Yan J J 2007 Physica A 379 81

    [22]

    Yang D S, Zhang H G, Zhao Y, Song C H, Wang Y C 2010 Acta Phys. Sin. 59 1562 (in Chinese) [杨东升、张化光、赵 琰、宋崇辉、王迎春 2010 59 1562]

    [23]

    Park J H, Ji D H, Won S C, Lee S M 2008 Applied Mathematics and Computation 204 170

    [24]

    Anton S 1992 The H∞ Control Problem (New York: Prentice-Hall) p5

    [25]

    Boyd S, Ghaoui L E, Feron E, Balakrishnan V 1994 Linear Matrix Inequalities in System

  • [1]

    Ott E, Grebogi C, Yorke J A 1990 Phys. Lett. 64 1196

    [2]

    Pecora L M, Carroll T L 1990 Phys.Rec.Let. 64 821

    [3]

    Tu L L, Lu J A 2005 Chin. Phys. 14 1755

    [4]

    Cai G L, Tan Z M, Zhou W H, Tu W T 2007 Acta Phys. Sin. 56 6230 (in Chinese) [蔡国梁、谭振梅、周维怀、涂文桃 2007 56 6230]

    [5]

    Gong L H 2005 Acta Phys. Sin. 54 3502 (in Chinese) [龚礼华 2005 54 3502]

    [6]

    Zhang H B, Yu Y B, Zhang J 2010 Chin. Phys. B 19 080509-1

    [7]

    Chen G R, Lv J H 2003 Dynamics analysis, control and synchronization of Lorenz system family (Beijing: Science Press) p2 (in Chinese) [陈关荣、吕金虎 2003 Lorenz系统族的动力学分析、控制与同步 (北京: 科学出版社) 第2页]

    [8]

    Chen G, Dong X 1998 From chaos to order:Methodologies, Perspectives and Application (Singapore: World Scientifi) p4

    [9]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [10]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. On Circuits & Systems-Ⅰ 33 1072

    [11]

    Chen G R, Ueta T 1999 Int. J. of Bifur Chaos 9 1465

    [12]

    Lü J H, Chen G R 2002 Int. J. of Bifur Chaos 12 659

    [13]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitons and Fractals 22 1031

    [14]

    Wu X J, Wang X Y 2006 Acta Phys. Sin. 55 6261 (in Chinese) [武相军、王兴元 2006 55 6261]

    [15]

    Liu Y Z, Jiang C S, Lin C S 2008 Acta Phys. Sin. 57 6808 (in Chinese) [刘扬正、姜长生、林长圣 2008 57 6808]

    [16]

    Chen G P, Hao J B 2008 Communications Technology 41 230 (in Chinese)[陈光平、郝加波 2008 通信技术 41 230]

    [17]

    Chen A M, Lu J A, Lv J H 2006 Physics A 364 103

    [18]

    Zames G 1981 IEEE Trans. Automatic Control 26 301

    [19]

    Wei R, Wang X Y 2004 Acta Phys. Sin. 53 3298 (in Chinese) [魏 荣、王行愚 2004 53 3298]

    [20]

    Yan J J 2004 Chaos, Solitons and Fractals 21 283

    [21]

    Hou Y Y, Liao T L, Yan J J 2007 Physica A 379 81

    [22]

    Yang D S, Zhang H G, Zhao Y, Song C H, Wang Y C 2010 Acta Phys. Sin. 59 1562 (in Chinese) [杨东升、张化光、赵 琰、宋崇辉、王迎春 2010 59 1562]

    [23]

    Park J H, Ji D H, Won S C, Lee S M 2008 Applied Mathematics and Computation 204 170

    [24]

    Anton S 1992 The H∞ Control Problem (New York: Prentice-Hall) p5

    [25]

    Boyd S, Ghaoui L E, Feron E, Balakrishnan V 1994 Linear Matrix Inequalities in System

  • [1] 曾柏云, 辜鹏宇, 蒋世民, 贾欣燕, 樊代和. Markov环境下“X”态基于CHSH不等式的量子非局域关联检验.  , 2023, 72(5): 050301. doi: 10.7498/aps.72.20222218
    [2] 曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和. 基于CHSH不等式几何解释的“X”态量子非局域关联检验.  , 2022, 71(17): 170302. doi: 10.7498/aps.71.20220445
    [3] 王宇娟, 涂俐兰, 宋帅, 李宽洋. 耦合含时滞的相互依存网络的局部自适应异质同步.  , 2018, 67(5): 050504. doi: 10.7498/aps.67.20171927
    [4] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究.  , 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [5] 杨娟, 杨丹, 黄彬, 张小洪, 杨聪. 变时延移动Ad-Hoc网络容量非合作规划博弈模型的渐近稳定性.  , 2014, 63(2): 020501. doi: 10.7498/aps.63.020501
    [6] 王斌, 薛建议, 贺好艳, 朱德兰. 基于线性矩阵不等式的一类新羽翼倍增混沌分析与控制.  , 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [7] 祝大伟, 涂俐兰. 随机扰动下Lorenz混沌系统的自适应同步与参数识别.  , 2013, 62(5): 050508. doi: 10.7498/aps.62.050508
    [8] 田昌海, 邓敏艺. 随机扰动对螺旋波动力学的影响研究.  , 2013, 62(19): 190503. doi: 10.7498/aps.62.190503
    [9] 涂俐兰, 刘红芳, 余乐. 噪声下时滞复杂网络的局部自适应H无穷一致性.  , 2013, 62(14): 140506. doi: 10.7498/aps.62.140506
    [10] 柯超, 王志明, 涂俐兰. 随机扰动下时滞复杂动力网络的一致性.  , 2013, 62(1): 010508. doi: 10.7498/aps.62.010508
    [11] 赵加强, 曹连振, 王晓芹, 逯怀新. 三光子GHZ态中不同Bell型不等式的实验研究.  , 2012, 61(17): 170301. doi: 10.7498/aps.61.170301
    [12] 赵加强, 逯怀新. 原子偶极压缩的相干控制和Cauchy-Schwarz不等式的破坏.  , 2010, 59(11): 7875-7879. doi: 10.7498/aps.59.7875
    [13] 杨东升, 张化光, 赵琰, 宋崇辉, 王迎春. 基于LMI的参数未知时变时滞混沌系统模糊自适应H∞同步.  , 2010, 59(3): 1562-1567. doi: 10.7498/aps.59.1562
    [14] 张建雄, 唐万生, 徐 勇. 一个新的三维混沌系统.  , 2008, 57(11): 6799-6807. doi: 10.7498/aps.57.6799
    [15] 李秀春, 徐 伟, 肖玉柱. 基于积分观测器实现一类受扰混沌系统的同步.  , 2008, 57(3): 1465-1470. doi: 10.7498/aps.57.1465
    [16] 王占山, 张化光, 王智良. 一类混沌神经网络的全局同步.  , 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [17] 何文平, 封国林, 董文杰, 李建平. 求解对流扩散方程的四种差分格式的比较.  , 2004, 53(10): 3258-3264. doi: 10.7498/aps.53.3258
    [18] 窦春霞, 张淑清. 基于观测器的模型不确定的耦合时空混沌H∞跟踪控制.  , 2004, 53(12): 4120-4125. doi: 10.7498/aps.53.4120
    [19] 吴忠强, 岳东, 许世范. Chua混沌系统的一种模糊控制器设计——LMI法.  , 2002, 51(6): 1193-1197. doi: 10.7498/aps.51.1193
    [20] 翁征宇, 吴杭生. Kubo线性输运系数公式.  , 1984, 33(4): 575-578. doi: 10.7498/aps.33.575
计量
  • 文章访问数:  8227
  • PDF下载量:  698
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-09
  • 修回日期:  2010-09-06
  • 刊出日期:  2011-05-15

/

返回文章
返回
Baidu
map