搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态结构与性质关系Ⅱ——Mg-9Al熔体的运动黏度及与熔体微观结构的关系

弭光宝 李培杰 Охапкин А В Константинова Н Ю Сабирзянов А А Попель П С

引用本文:
Citation:

液态结构与性质关系Ⅱ——Mg-9Al熔体的运动黏度及与熔体微观结构的关系

弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С

Relationship between liquid structure and property Ⅱ—— Kinematic viscosity of Mg-9Al melt and its relationship with the microstructure

Сабирзянов А А, Попель П С, Mi Guang-Bao, Li Pei-Jie, Охапкин А В, Константинова Н Ю
PDF
导出引用
  • 采用坩埚扭摆振动法测量Mg-9Al熔体的运动黏度,得到890—1190 K温区内高精度的黏度-温度关系曲线ν(T),发现升温过程中黏度随温度升高发生异常变化,当温度升高至1000—1075 K时,黏度由快速增大转变为逐渐减小,即发生转折变化;在随后的降温和第二次升温过程中,黏度随温度变化呈指数规律单调递增(减),符合Arrhenius方程式.在实验研究基础上,采用剩余键结构模型和"平均原子集团"演变行为的计算模型讨论Mg-9Al熔体的黏度与微观结构之间的相关性,结果表明:类
    The method of crucible rotating oscillation damping is employed to measure the kinematic viscosity of Mg-9Al melt, and the curve of viscosity ν versus temperature T from 890 K to 1190 K is obtained. It is found that there is an abnormal change for the viscosity in the first heating process, i.e., when the temperature is increased to 1000—1075 K, the viscosity varies from increase to decrease. However, in the subsequent cooling process and the second heating process, the viscosity increases (decreases) monotonically according to an exponential law with temperature, which accords with the Arrhenius equation. Based on the residual bond model and the calculation model for evolution behavior of "average atomic cluster", the correlation between viscosity and microstructure of Mg-9Al melt is discussed. The results show that the breakage of Al-Al(B) bonds in basic unit of β phase-like residual bond structures causes an abnormal change of viscosity in the first heating process; in the subsequent cooling process and the second heating process, the melt reaches a new dynamic equilibrium state, and Al atoms are uniformly distributed in the melt. At this time, the size of Mg-Al average atomic cluster dS and the number of short-range order atoms NS inside them increase (decrease) monotonically with temperature, and the relationship between viscosity ν and size of average atomic clusters dS is expressed as a linear function, i.e., ν = ν0 + K·dS, which presents a new way for revealing micro-structure change of alloy melt and further understanding the change characteristic of viscosity.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号:2007CB613702)和国际科技合作项目(批准号:2007DFC50090)资助的课题
    [1]

    Baum B A 1988 Melts 2 18 (in Russian)

    [2]

    Nikitin V I 2002 Foundry 10 8 (in Russian)

    [3]

    Chen H S, Zu F Q, Chen J, Zou L, Ding G H, Huang Z Y 2008 Sci China Technological Sciences 51 1402

    [4]

    Glazov V M, Vobct M, Timoginko V I 1989 Research method of liquid metal and semiconductor property (Moscow: Metallurgical Industry Press) P48—50 (in Russian)

    [5]

    Kurnaskii A I 1960 Memoir (vol.1) (Moscow: Soviet Union Academy of Sciences Press) (in Russian)

    [6]

    Bachinskii A I 1960 Science memoir (Moscow: Soviet Union Academy of Sciences Press) (in Russian)

    [7]

    Baum B A, Hassin G A, Tyagunov G V 1984 Liquid Steel (Moscow: Metallurgical Industry Press) P6 (in Russian)

    [8]

    Angell C A 1995 Science 267 1924

    [9]

    Geng H R, Sun J C, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然、孙春静、杨中喜、王 瑞、吉蕾蕾 2006 55 1320]

    [10]

    An G Y 1990 Casting FormingTheroy (Beijing:Mechanism Industy Press) 27—34 (in Chinese) [安阁英1990 铸件形成理论 (北京:机械工业出版社) 第27—34页]

    [11]

    Born M Green H S 1947 Proc.Roy.Soc. A 190 455

    [12]

    Frenkel J I 1935 Nature 136 167

    [13]

    Banchinkov G M 1947 Theory for liquid viscosity (Moscow: National Science and Technology Press) P 7—71 (in Russian)

    [14]

    Iida T, Rodarick I L 1993 The Properties of Liquid Metal (Ox-Ford: Clavendon Press) p148

    [15]

    Frenkel J I 1958 An Introduction to Metal Physics (Moscow: National Press of Physics-Mathematics) p236—252 (in Russian)

    [16]

    Shpilrain E E, Fomin V A, Skovorotko S N 1983 Research of viscosity for liquid metal (Moscow: Science Press) p10—54 (in Russian)

    [17]

    Kim W, Chair T S 2001 Bull Korean Chem. Soc. 22 43

    [18]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Crystall Solids 353 3243

    [19]

    Wang Y Q, Wu Y Q, Bian X F 2007 Chinese Science Bulletin 52 1441

    [20]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese)[弭光宝、李培杰、Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С 2011 60 046601]

    [21]

    Mi G B, Li P J, He L J 2010 Sci. China. Phys. Mech. Astron 53 1571

    [22]

    Mi G B, Li P J, He L J 2010 Sci. China. Phys. Mech. Astron 53 1830

    [23]

    Mi G B, Li P J, He L J 2010 Sci. China. Phys. Mech. Astron 53 2054

    [24]

    Mi G B, Li P J, He L J, Popel P S 2010 Rare Metal Materials and Engineering 39 1881

    [25]

    Mi G B, Li P J, He L J, Wang 2009 J. Rare Metals 28 52

    [26]

    Shvidkovskii E G 1955 Some problems in the viscosity of molten metals (Moscow: Gostekhizdat) P83 (in Russian) 83]

    [27]

    Chhabra R P, Seth D K 1990 Z. Metallkde 81 264

    [28]

    Mi G B, Li P J, He L J 2009 The Chinese Journal of Nonferrous Metals 19 2074 (in Chinese) [弭光宝、李培杰、何良菊 2009 中国有色金属学报 19 2074]

    [29]

    Mi G B, Li P J, He L J 2009 The Chinese Journal of Nonferrous Metals 19 1372 (in Chinese)[弭光宝、李培杰、何良菊 2009 中国有色金属学报 19 1372]

    [30]

    Yershov G S, Bychnov Yu B 1979 Regeneration of high strength aluminum alloy (Moscow: Metallurgy Press) p5—60 (in Russian)

    [31]

    Li P J 1994 Ph D Dissertation (Harbin: Harbin Institute of Technology) p64—72 (in Chinese) [李培杰 1994 博士学位论文 (哈尔滨: 哈尔滨工业大学) 第64—72页]

    [32]

    Brodova I G, Popel P S, Barbin N M 2005 Melt-basis for formation of structure and properties of aluminum alloy (Ekaterinburg: Izd.-vo UB RAS) p17—59 (in Russian)

    [33]

    Zhang R L 1993 Empirical Electron Theory of Solids and Molecules (Jilin: Jilin Science and Technology Press) (in Chinese) [张瑞林1993 固体与分子经验电子理论 (长春:吉林科学技术出版社)]

    [34]

    Arnold G L, Anbar A D, Barling J, Lyons T W 2004 Science 304 84

    [35]

    Skrebcov A M 2008 Casting Process 5 9 (in Russian)

    [36]

    Zu F Q, Zhu Z G, Guo L J, Zhang B, Shui J P, Liu C S 2001Physical Review B 64 180203

    [37]

    Zu F Q, Zhu Z G, Guo L J 2002 Phys. Rev. Lett. 89 1

    [38]

    Guo L J, Zu F Q, Zhu Z G 2002 Acta Phys.Sin. 51 300 (in Chinese) [郭丽君、祖方遒、朱震刚 2002 51 300]

    [39]

    Baum B A 1979 Metal liquid — problem and assumption (Moscow: Science press) p120 (in Russian)

    [40]

    Popel P S 1988 Ph. D. Dissertation (Ekaterinburg: USTU-UPI) p280—320 (in Russian)

    [41]

    Dean J A 1999 Lange’s Handbook of Chemistry (15th Ed.) (New York: McGraw-Hill) p6.124

  • [1]

    Baum B A 1988 Melts 2 18 (in Russian)

    [2]

    Nikitin V I 2002 Foundry 10 8 (in Russian)

    [3]

    Chen H S, Zu F Q, Chen J, Zou L, Ding G H, Huang Z Y 2008 Sci China Technological Sciences 51 1402

    [4]

    Glazov V M, Vobct M, Timoginko V I 1989 Research method of liquid metal and semiconductor property (Moscow: Metallurgical Industry Press) P48—50 (in Russian)

    [5]

    Kurnaskii A I 1960 Memoir (vol.1) (Moscow: Soviet Union Academy of Sciences Press) (in Russian)

    [6]

    Bachinskii A I 1960 Science memoir (Moscow: Soviet Union Academy of Sciences Press) (in Russian)

    [7]

    Baum B A, Hassin G A, Tyagunov G V 1984 Liquid Steel (Moscow: Metallurgical Industry Press) P6 (in Russian)

    [8]

    Angell C A 1995 Science 267 1924

    [9]

    Geng H R, Sun J C, Yang Z X, Wang R, Ji L L 2006 Acta Phys. Sin. 55 1320 (in Chinese) [耿浩然、孙春静、杨中喜、王 瑞、吉蕾蕾 2006 55 1320]

    [10]

    An G Y 1990 Casting FormingTheroy (Beijing:Mechanism Industy Press) 27—34 (in Chinese) [安阁英1990 铸件形成理论 (北京:机械工业出版社) 第27—34页]

    [11]

    Born M Green H S 1947 Proc.Roy.Soc. A 190 455

    [12]

    Frenkel J I 1935 Nature 136 167

    [13]

    Banchinkov G M 1947 Theory for liquid viscosity (Moscow: National Science and Technology Press) P 7—71 (in Russian)

    [14]

    Iida T, Rodarick I L 1993 The Properties of Liquid Metal (Ox-Ford: Clavendon Press) p148

    [15]

    Frenkel J I 1958 An Introduction to Metal Physics (Moscow: National Press of Physics-Mathematics) p236—252 (in Russian)

    [16]

    Shpilrain E E, Fomin V A, Skovorotko S N 1983 Research of viscosity for liquid metal (Moscow: Science Press) p10—54 (in Russian)

    [17]

    Kim W, Chair T S 2001 Bull Korean Chem. Soc. 22 43

    [18]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Crystall Solids 353 3243

    [19]

    Wang Y Q, Wu Y Q, Bian X F 2007 Chinese Science Bulletin 52 1441

    [20]

    Mi G B, Li P J, Ohapkin A V, Konstantinova N Yu, Sabirzianov A A, Popel P S 2011 Acta Phys. Sin. 60 046601 (in Chinese)[弭光宝、李培杰、Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С 2011 60 046601]

    [21]

    Mi G B, Li P J, He L J 2010 Sci. China. Phys. Mech. Astron 53 1571

    [22]

    Mi G B, Li P J, He L J 2010 Sci. China. Phys. Mech. Astron 53 1830

    [23]

    Mi G B, Li P J, He L J 2010 Sci. China. Phys. Mech. Astron 53 2054

    [24]

    Mi G B, Li P J, He L J, Popel P S 2010 Rare Metal Materials and Engineering 39 1881

    [25]

    Mi G B, Li P J, He L J, Wang 2009 J. Rare Metals 28 52

    [26]

    Shvidkovskii E G 1955 Some problems in the viscosity of molten metals (Moscow: Gostekhizdat) P83 (in Russian) 83]

    [27]

    Chhabra R P, Seth D K 1990 Z. Metallkde 81 264

    [28]

    Mi G B, Li P J, He L J 2009 The Chinese Journal of Nonferrous Metals 19 2074 (in Chinese) [弭光宝、李培杰、何良菊 2009 中国有色金属学报 19 2074]

    [29]

    Mi G B, Li P J, He L J 2009 The Chinese Journal of Nonferrous Metals 19 1372 (in Chinese)[弭光宝、李培杰、何良菊 2009 中国有色金属学报 19 1372]

    [30]

    Yershov G S, Bychnov Yu B 1979 Regeneration of high strength aluminum alloy (Moscow: Metallurgy Press) p5—60 (in Russian)

    [31]

    Li P J 1994 Ph D Dissertation (Harbin: Harbin Institute of Technology) p64—72 (in Chinese) [李培杰 1994 博士学位论文 (哈尔滨: 哈尔滨工业大学) 第64—72页]

    [32]

    Brodova I G, Popel P S, Barbin N M 2005 Melt-basis for formation of structure and properties of aluminum alloy (Ekaterinburg: Izd.-vo UB RAS) p17—59 (in Russian)

    [33]

    Zhang R L 1993 Empirical Electron Theory of Solids and Molecules (Jilin: Jilin Science and Technology Press) (in Chinese) [张瑞林1993 固体与分子经验电子理论 (长春:吉林科学技术出版社)]

    [34]

    Arnold G L, Anbar A D, Barling J, Lyons T W 2004 Science 304 84

    [35]

    Skrebcov A M 2008 Casting Process 5 9 (in Russian)

    [36]

    Zu F Q, Zhu Z G, Guo L J, Zhang B, Shui J P, Liu C S 2001Physical Review B 64 180203

    [37]

    Zu F Q, Zhu Z G, Guo L J 2002 Phys. Rev. Lett. 89 1

    [38]

    Guo L J, Zu F Q, Zhu Z G 2002 Acta Phys.Sin. 51 300 (in Chinese) [郭丽君、祖方遒、朱震刚 2002 51 300]

    [39]

    Baum B A 1979 Metal liquid — problem and assumption (Moscow: Science press) p120 (in Russian)

    [40]

    Popel P S 1988 Ph. D. Dissertation (Ekaterinburg: USTU-UPI) p280—320 (in Russian)

    [41]

    Dean J A 1999 Lange’s Handbook of Chemistry (15th Ed.) (New York: McGraw-Hill) p6.124

  • [1] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能.  , 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [2] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播.  , 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [3] 商继祥, 赵云波, 胡丽娜. 高温金属熔体黏度突变探索.  , 2018, 67(10): 106402. doi: 10.7498/aps.67.20172721
    [4] 王鑫洋, 陈念科, 王雪鹏, 张斌, 陈志红, 李贤斌, 刘显强. 物理截断与电子局域函数结合法研究非晶态结构中的原子成键.  , 2016, 65(17): 173101. doi: 10.7498/aps.65.173101
    [5] 吴宇昊, 王伟丽, 魏炳波. 液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究.  , 2016, 65(10): 106402. doi: 10.7498/aps.65.106402
    [6] 弭光宝, 李培杰, 黄旭, 曹春晓. 液态结构与性质关系Ⅲ剩余键理论模型.  , 2012, 61(18): 186106. doi: 10.7498/aps.61.186106
    [7] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型.  , 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [8] 弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. 液态结构与性质关系Ⅰ——Mg熔体的运动黏度及与熔体微观结构的关系.  , 2011, 60(4): 046601. doi: 10.7498/aps.60.046601
    [9] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型.  , 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [10] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.  , 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [11] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究.  , 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [12] 王永刚, 陈登平, 贺红亮, 王礼立, 经福谦. 冲击加载下LY12铝合金的动态屈服强度和层裂强度与温度的相关性.  , 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [13] 耿浩然, 孙春静, 杨中喜, 王 瑞, 吉蕾蕾. 金属熔体黏度与结构相关性的分子动力学模拟.  , 2006, 55(3): 1320-1324. doi: 10.7498/aps.55.1320
    [14] 郭丽君, 祖方遒, 朱震刚. 以内耗技术探索Pb-Sn合金熔体的结构变化.  , 2002, 51(2): 300-303. doi: 10.7498/aps.51.300
    [15] 王 丽, 李 辉, 边秀房, 孙民华, 刘相法, 刘洪波, 陈魁英. 纯铝熔体微观结构演变及液固相关性研究….  , 2000, 49(1): 45-48. doi: 10.7498/aps.49.45
    [16] 唐少龙, 曹庆琪, 王敦辉, 章建荣, 张世远, 都有为. 熔体快淬Pr(Fe1-xCox)2合金的结构和磁性.  , 1999, 48(13): 274-279. doi: 10.7498/aps.48.274
    [17] 徐至中. GexSi1-x合金中的键长及其对电子能带结构的影响.  , 1994, 43(7): 1111-1117. doi: 10.7498/aps.43.1111
    [18] 龚新高, 郑庆祺. 镓原子集团结构的第一性原理分子动力学研究.  , 1993, 42(2): 244-251. doi: 10.7498/aps.42.244
    [19] 王德和. 非晶态硅(锗)中的原子相关性和结构模型.  , 1992, 41(5): 792-797. doi: 10.7498/aps.41.792
    [20] 唐景昌, 付送保, 季红, 陈一兵. 利用原子集团多重散射理论决定HCOO-Cu(110)的结构.  , 1992, 41(6): 968-976. doi: 10.7498/aps.41.968
计量
  • 文章访问数:  8135
  • PDF下载量:  748
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-06
  • 修回日期:  2011-01-12
  • 刊出日期:  2011-05-15

/

返回文章
返回
Baidu
map