搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于圆柱谐振腔的高功率微波脉冲压缩系统

方进勇 黄惠军 张治强 黄文华 江伟华

引用本文:
Citation:

基于圆柱谐振腔的高功率微波脉冲压缩系统

方进勇, 黄惠军, 张治强, 黄文华, 江伟华

High power microwave pulse compression systembased on cylindrical resonant cavity

Fang Jin-Yong, Huang Hui-Jun, Zang Zhi-Qiang, Huang Wen-Hua, Jiang Wei-Hua
PDF
导出引用
  • 提出了一种新型的基于圆柱谐振腔的高功率级波脉冲压缩系统,介绍了该系统的结构形式,给出了部分关键器件的数值模拟结果,对系统的功率容量及品质因数进行了初步分析.对于高功率微波(HPM)脉冲压缩系统来说,系统的功率容量与最终获取的HPM功率大小密切相关,谐振腔的固有品质因数与系统效率密不可分,工程实践表明,相对于基于矩形谐振腔的脉冲压缩系统,本文设计的基于圆柱谐振腔的脉冲压缩系统功率容量可提高一个量级,谐振腔的固有品质因数可提高5倍以上.
    High power microwave (HPM) pulse compression is a main method to obtain high power microwave with non-relativistic devices. The mature HPM pulse compression systems are nearly all based on rectangular resonant cavity, and the pulse compression systems based on cylindrical resonant cavity are in progress. A new type pulse compression system based on cylindrical resonant cavity is proposed in this paper, and the structure of the system is different from those of all other HPM pulse compression systems ever reported. The structure and the numerical simulation results of the key parts are presented, and a preliminary analysis of the power capability of the system and the quality factor of the resonant cavity is also given. For a pulse compression system, the power capacity is a key factor for the output microwave pulse power, and the quality factor of the resonant cavity has a close relationship with the system energy efficiency. According to the experimental results, the pulse capacity of the pulse compression system based on cylindrical resonant cavity can be 10 times higher than that of the systems based on the rectangular resonant cavity, and the quality factor of the resonant cavity can be improved by a factor of 5.
    • 基金项目: 国家高技术研究发展计划资助的课题.
    [1]

    Fan Z K, Luo X M, Fan B, Zhang Y J 2008 Chin. Phys. B 17 975

    [2]

    Xiao R Z, Liu G Z, Chen C H 2008 Chin. Phys. B 17 3807

    [3]

    Huang H, Gan Y Q, Lei L R, Jin X, Ju B Q, Xiang F, Feng D C, Liu Z 2008, Acta Phys. Sin. 57 1765 (in Chinese) [黄 华、甘延青、雷禄容、金 晓、鞠炳权、向 飞、冯弟超、刘 忠 2008 57 1765]

    [4]

    Li Z H, Chang A B, Ju B Q, Xiang F, Zhao D L, Gan Y Q, Liu Z, Su C, Huang H 2007 Acta Phys. Sin. 56 2603 (in Chinese) [李正红、常安碧、鞠炳权、向 飞、赵殿林、甘延青、刘 忠、苏 昶、黄 华 2007 56 2603]

    [5]

    Luo X, Liao C, Meng F B, Zhang Y J 2006 Acta Phys. Sin. 55 5774 (in Chinese) [罗 雄、廖 成、孟凡宝、张运俭 2006 55 5774]

    [6]

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵 浩、刘国治 2001 50 2387]

    [7]

    Chao A W, Tigner M 1998 Handbook of accelerator physics and engineering (World Scientific Publishing Co. Ltd,. Singapore) pp374—378

    [8]

    Alvarez R A, Byrne D P, Johoson R M 1986 Rev. Sci. Instrum. 57 2475

    [9]

    Alvarez R A 1986 Rev. Sci. Instrum. 57 2481

    [10]

    Ning H, Fang J Y, Li P, Liu J Y, Liu G Z, Xiao L L, Tong D C, Lin Y Z 2001 High Power Laser and Particle Beams 13 471 (in Chinese) [宁 辉、方进勇、李 平、刘静月、刘国治、肖利苓、童德春、林郁正 2001 强激光与粒子束 13 471]

    [11]

    Fang J Y 1997 (Northwest Institute of nuclear Technology (Xian))p10 (in Chinese) [方进勇 1997 (西北核技术研究所(西安))第10页]

    [12]

    Zhang Z Q, Fang J Y, Hao W X, Qiu S, Nin H 2006 High Power Laser and Particle Beams 18 330 (in Chinese) [张治强、方进勇、郝文析、秋 实、宁 辉 2006 强激光与粒子束 18 330]

    [13]

    Xie S L 2005 (CEPA(Mianyang)) p5 (in Chinese) [谢苏隆 2005 (中国工程物理研究院)(绵阳)第5页]

    [14]

    Vikharev A L, Gorbachev A M, Ivanov O A 1998 Technical Physics Letters 24 791

    [15]

    Vikharev A L, Ivanov O A, Gorbachev A M, Isaev V A, Kuzikov S V, Gold S H, Kinkead A K, Nezhevenko O A, Hirshfiled J L Proceedings of the 2003 particle accelerator conference pp1147—1149

    [16]

    David M P 2006 Microwave Engineering, Third Edition. (Beijing: Publishing House of Electronic Industry)

  • [1]

    Fan Z K, Luo X M, Fan B, Zhang Y J 2008 Chin. Phys. B 17 975

    [2]

    Xiao R Z, Liu G Z, Chen C H 2008 Chin. Phys. B 17 3807

    [3]

    Huang H, Gan Y Q, Lei L R, Jin X, Ju B Q, Xiang F, Feng D C, Liu Z 2008, Acta Phys. Sin. 57 1765 (in Chinese) [黄 华、甘延青、雷禄容、金 晓、鞠炳权、向 飞、冯弟超、刘 忠 2008 57 1765]

    [4]

    Li Z H, Chang A B, Ju B Q, Xiang F, Zhao D L, Gan Y Q, Liu Z, Su C, Huang H 2007 Acta Phys. Sin. 56 2603 (in Chinese) [李正红、常安碧、鞠炳权、向 飞、赵殿林、甘延青、刘 忠、苏 昶、黄 华 2007 56 2603]

    [5]

    Luo X, Liao C, Meng F B, Zhang Y J 2006 Acta Phys. Sin. 55 5774 (in Chinese) [罗 雄、廖 成、孟凡宝、张运俭 2006 55 5774]

    [6]

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵 浩、刘国治 2001 50 2387]

    [7]

    Chao A W, Tigner M 1998 Handbook of accelerator physics and engineering (World Scientific Publishing Co. Ltd,. Singapore) pp374—378

    [8]

    Alvarez R A, Byrne D P, Johoson R M 1986 Rev. Sci. Instrum. 57 2475

    [9]

    Alvarez R A 1986 Rev. Sci. Instrum. 57 2481

    [10]

    Ning H, Fang J Y, Li P, Liu J Y, Liu G Z, Xiao L L, Tong D C, Lin Y Z 2001 High Power Laser and Particle Beams 13 471 (in Chinese) [宁 辉、方进勇、李 平、刘静月、刘国治、肖利苓、童德春、林郁正 2001 强激光与粒子束 13 471]

    [11]

    Fang J Y 1997 (Northwest Institute of nuclear Technology (Xian))p10 (in Chinese) [方进勇 1997 (西北核技术研究所(西安))第10页]

    [12]

    Zhang Z Q, Fang J Y, Hao W X, Qiu S, Nin H 2006 High Power Laser and Particle Beams 18 330 (in Chinese) [张治强、方进勇、郝文析、秋 实、宁 辉 2006 强激光与粒子束 18 330]

    [13]

    Xie S L 2005 (CEPA(Mianyang)) p5 (in Chinese) [谢苏隆 2005 (中国工程物理研究院)(绵阳)第5页]

    [14]

    Vikharev A L, Gorbachev A M, Ivanov O A 1998 Technical Physics Letters 24 791

    [15]

    Vikharev A L, Ivanov O A, Gorbachev A M, Isaev V A, Kuzikov S V, Gold S H, Kinkead A K, Nezhevenko O A, Hirshfiled J L Proceedings of the 2003 particle accelerator conference pp1147—1149

    [16]

    David M P 2006 Microwave Engineering, Third Edition. (Beijing: Publishing House of Electronic Industry)

  • [1] 舒盼盼, 赵朋程. 高功率微波介质窗气体侧击穿特性的粒子-蒙特卡洛碰撞模拟研究.  , 2024, 73(23): 1-10. doi: 10.7498/aps.73.20241177
    [2] 骆新耀, 薛宇哲, 徐彻, 杜创洲, 刘庆想. 基于T形四周期谐振慢波结构的X波段高功率微波产生技术的理论与仿真.  , 2024, 73(9): 094101. doi: 10.7498/aps.73.20231921
    [3] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究.  , 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [4] 黄华, 吴洋, 刘振帮, 袁欢, 何琥, 李乐乐, 李正红, 金晓, 马弘舸. 锁频锁相的高功率微波器件技术研究.  , 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [5] 李志刚, 程立, 袁忠才, 汪家春, 时家明. 高功率微波作用下等离子体中的雪崩效应研究.  , 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [6] 冉茂怡, 胡耀垓, 赵正予, 张援农. 高功率微波注入对流层对氟利昂的影响.  , 2017, 66(4): 045101. doi: 10.7498/aps.66.045101
    [7] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理.  , 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [8] 魏进进, 周东方, 余道杰, 胡涛, 侯德亭, 张德伟, 雷雪, 胡俊杰. 高功率微波作用下O-离子解吸附产生种子电子过程.  , 2016, 65(5): 055202. doi: 10.7498/aps.65.055202
    [9] 唐涛. 高功率微波土壤击穿的数值验证研究.  , 2015, 64(4): 045203. doi: 10.7498/aps.64.045203
    [10] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理.  , 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [11] 周东方, 余道杰, 杨建宏, 侯德亭, 夏蔚, 胡涛, 林竞羽, 饶育萍, 魏进进, 张德伟, 王利萍. 基于混合大气传输模型的单脉冲高功率微波大气击穿理论与实验研究.  , 2013, 62(1): 014207. doi: 10.7498/aps.62.014207
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究.  , 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [13] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究.  , 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [14] 王淦平, 向飞, 谭杰, 曹绍云, 罗敏, 康强, 常安碧. 长脉冲高功率微波驱动源放电过程研究.  , 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [15] 李国林, 舒挺, 袁成卫, 张军, 靳振兴, 杨建华, 钟辉煌, 杨杰, 武大鹏. 一种高功率微波空间滤波器的设计与初步实验研究.  , 2010, 59(12): 8591-8596. doi: 10.7498/aps.59.8591
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟.  , 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [17] 罗 雄, 廖 成, 孟凡宝, 张运俭. 同轴虚阴极谐振效应研究.  , 2006, 55(11): 5774-5778. doi: 10.7498/aps.55.5774
    [18] 张 军, 钟辉煌. 高功率O型慢波器件的纵向模式选择研究.  , 2005, 54(1): 206-210. doi: 10.7498/aps.54.206
    [19] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究.  , 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [20] 罗勇, 李宏福, 谢仲怜, 喻胜, 邓学, 赵青, 徐勇. 含有吸收介质的突变结构腔体场匹配分析.  , 2004, 53(1): 229-234. doi: 10.7498/aps.53.229
计量
  • 文章访问数:  9688
  • PDF下载量:  932
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-21
  • 修回日期:  2010-06-29
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map