-
以串联型感应电能传输(IPT)系统为例,用非线性动力学的方法研究了IPT系统的多谐振点的判断及稳定性分析问题.建立了系统的频闪映射模型,根据不动点理论推导出了系统的稳态响应分段解析函数式,并在此基础上,给出了系统谐振工作点的理论判据,结合系统庞加莱映射的雅可比矩阵特征值分布情况,给出了谐振点的稳定性判据.结合具体实例系统,讨论了其多谐振点现象,并通过仿真和实验进行了验证,证明了本文理论分析结果的正确性.本文所提出的分析方法也可为其他类似谐振变换电路的建模及稳态工作点分析提供一定的理论参考.
-
关键词:
- 感应电能传输(IPT) /
- 频闪映射 /
- 雅可比矩阵 /
- 稳定性
In this paper we determine multiple resonant operating points (ROPs) of inductive power transfer (IPT) systems and perform the corresponding stability analysis of a series-tuned IPT system, which is taken for example, through using nonlinear dynamics theories. The stroboscopic mapping model of the system is built and a piecewise analytical function of the steady-state response is derived with the fixed-point theory. Then a criterion for assessing the system ROPs is given mathematically. The stability analysis of ROPs is achieved according to the locations of the eigenvalues of the Jacobi matrix of the Poincare mapping model of the system. A case study of the phenomenon of multiple ROPs is conducted, and both simulation and experimental results verify the theoretical results of the proposed method. Furthermore, the proposed method can provide useful theoretical reference for modeling and steady-state analysing other similar resonant converters.-
Keywords:
- inductive power transfer (IPT) /
- stroboscopic mapping /
- Jacobi matrix /
- stability
[1] Ping S 2008 Ph. D. Dissertation (Auckland: The Univeristy of Auckland)
[2] Yang Z, Liu W T, Basham E 2007 IEEE Trans. Magn. 43 3851
[3] Covic G A, Boys J T, Lu H G 2006 Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications Singapore, May 24—26, 2006 p466
[4] Dehennis A D, Wise K D 2005 Journal of Microelectromechanical Systems 14 12
[5] Green A W, Boys J T 1994 Proceedings of the 5th International Conference on Power Electronics and Variable-Speed Drives London, UK, Oct 26—28, 1994 p694
[6] Su Y G, Tang C S, Wu S P, Sun Y 2006 Proceedings of the International Conference on Power System Technology Chongqing, China Oct 22—26, 2006 p794
[7] Tang C S, Sun Y, Su Y G, Nguang S K, Hu A P 2009 IEEE Trans. Power Electron. 24 416
[8] Wang C S, Covic G A, Stielau O H 2004 IEEE Trans. Power Electron. 19 995
[9] Sun Y, Hu A P, Dai X, Su Y G. 2004 Proceedings of the International Conference on Power System Technology Singapore, Nov 21—24, 2004 p1015
[10] Dai X, Huang X Y, Sun Y 2006 Transactions of China Electrotechnical Society 21 78 (in Chinese) [戴 欣、黄席樾、孙 跃 2006 电工技术学报 21 78]
[11] Han T, Zhuo F, Yan J K, Liu T, Wang Z A 2005 Advanced Technology of Electrical Engineering and Energy 24 45 (in Chinese) [韩 腾、卓 放、闫军凯、刘 涛、王兆安 2005 电 工电能新技术 24 45] 〖12] Hu A P 2001 Ph. D. Dissertation (Auckland: The University of Auckland)
[12] Wang C S, Covic G A, Stielau O H 2004 IEEE Trans. Ind. Electron. 51 148
[13] Wu Y, Yan L G, Xu S G 2004 Proceedings of the CSEE 24 63 (in Chinese) [武 瑛、严陆光、徐善刚 2004 中国电机工程学报 24 63]
[14] Wang X M, Zhang B, Qiu D Y, Chen L G 2008 Acta Phys. Sin. 57 6112 (in Chinese) [王学梅、张 波、丘东元、陈良刚 2008 57 6112]
[15] Li M, Ma X K, Dai D, Zhang H 2005 Acta Phys. Sin. 54 1084 (in Chinese) [李 明、马西奎、戴 栋、张 浩 2005 54 1084]
[16] Wang A Y, Ling Z H 2010 Chin. Phys. B 19 070506
[17] Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zhou Y L, Jiang L Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙、汪秉宏、陈关荣、全宏俊、方锦清、邹艳丽、蒋品群 2003 52 12]
[18] Zhao Y B, Luo X S, Fang J Q, Wang B H 2005 Acta Phys. Sin. 54 5022 (in Chinese) [赵益波、罗晓曙、方锦清、汪秉宏 2005 54 5022]
[19] Chen Y S 1993 Bifurcation and Chaos Theory of Nonlinear Vibration Systems (Beijing: Higher Education Press) p109 (in Chinese) [陈予恕 1993 非线性振动系统的分叉和混沌理论 (北京: 高等教育出版社)第109页]
-
[1] Ping S 2008 Ph. D. Dissertation (Auckland: The Univeristy of Auckland)
[2] Yang Z, Liu W T, Basham E 2007 IEEE Trans. Magn. 43 3851
[3] Covic G A, Boys J T, Lu H G 2006 Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications Singapore, May 24—26, 2006 p466
[4] Dehennis A D, Wise K D 2005 Journal of Microelectromechanical Systems 14 12
[5] Green A W, Boys J T 1994 Proceedings of the 5th International Conference on Power Electronics and Variable-Speed Drives London, UK, Oct 26—28, 1994 p694
[6] Su Y G, Tang C S, Wu S P, Sun Y 2006 Proceedings of the International Conference on Power System Technology Chongqing, China Oct 22—26, 2006 p794
[7] Tang C S, Sun Y, Su Y G, Nguang S K, Hu A P 2009 IEEE Trans. Power Electron. 24 416
[8] Wang C S, Covic G A, Stielau O H 2004 IEEE Trans. Power Electron. 19 995
[9] Sun Y, Hu A P, Dai X, Su Y G. 2004 Proceedings of the International Conference on Power System Technology Singapore, Nov 21—24, 2004 p1015
[10] Dai X, Huang X Y, Sun Y 2006 Transactions of China Electrotechnical Society 21 78 (in Chinese) [戴 欣、黄席樾、孙 跃 2006 电工技术学报 21 78]
[11] Han T, Zhuo F, Yan J K, Liu T, Wang Z A 2005 Advanced Technology of Electrical Engineering and Energy 24 45 (in Chinese) [韩 腾、卓 放、闫军凯、刘 涛、王兆安 2005 电 工电能新技术 24 45] 〖12] Hu A P 2001 Ph. D. Dissertation (Auckland: The University of Auckland)
[12] Wang C S, Covic G A, Stielau O H 2004 IEEE Trans. Ind. Electron. 51 148
[13] Wu Y, Yan L G, Xu S G 2004 Proceedings of the CSEE 24 63 (in Chinese) [武 瑛、严陆光、徐善刚 2004 中国电机工程学报 24 63]
[14] Wang X M, Zhang B, Qiu D Y, Chen L G 2008 Acta Phys. Sin. 57 6112 (in Chinese) [王学梅、张 波、丘东元、陈良刚 2008 57 6112]
[15] Li M, Ma X K, Dai D, Zhang H 2005 Acta Phys. Sin. 54 1084 (in Chinese) [李 明、马西奎、戴 栋、张 浩 2005 54 1084]
[16] Wang A Y, Ling Z H 2010 Chin. Phys. B 19 070506
[17] Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zhou Y L, Jiang L Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙、汪秉宏、陈关荣、全宏俊、方锦清、邹艳丽、蒋品群 2003 52 12]
[18] Zhao Y B, Luo X S, Fang J Q, Wang B H 2005 Acta Phys. Sin. 54 5022 (in Chinese) [赵益波、罗晓曙、方锦清、汪秉宏 2005 54 5022]
[19] Chen Y S 1993 Bifurcation and Chaos Theory of Nonlinear Vibration Systems (Beijing: Higher Education Press) p109 (in Chinese) [陈予恕 1993 非线性振动系统的分叉和混沌理论 (北京: 高等教育出版社)第109页]
计量
- 文章访问数: 8499
- PDF下载量: 803
- 被引次数: 0