-
建立了一个简单的高功率微波(HPM)介质表面击穿释气模型,并采用PIC(partiele-in-cell)-MCC(Monte Carlo collisions)方法,通过自行编写的介质表面击穿数值模拟程序对不同释气条件下的介质表面HPM击穿过程进行了数值模拟研究,得到了击穿过程中电子数量等的时间图像和不同释气速度下的击穿延迟时间.模拟结果表明,对于具有一定时间宽度的HPM脉冲,当介质表面气体脱附速度较小时,由于介质表面气体层形成太慢而不会发生击穿;只有当脱附速度大于一定值时,击穿才会发生且击穿延迟时间在一定范围内随着脱附速度的增加而缩短.最后,将数值模拟得到的介质表面HPM击穿数据,与单极性表面击穿的实验诊断图像进行了对比,两者的发展趋势符合很好.A simple outgassing model for dielectric surface breakdown due to the high power microwave (HPM) irradiation was establised. By using the PIC (particle-in-cell)-MCC(Monto Carlo collisions) method, the numerical simulation program of the dielectrics surface breakdown was developed, and the simulation of breakdown for different outgassing speeds was performed. The temporal evolution of the electron number and delay time of the process of breakdown in the case of different outgassing speeds were obtained. The numerical results show that when the speed of outgassing is small, the breakdown does not occur for an HPM pulse of a given duration, because the formation of the gas layer on the dielectric surface is slow. When the speed of outgassing is greater than a certain value, the breakdown occurs and the breakdown delay time shortens with the gas desorption rate increasing in a certain range. Finally, the numerical simulation results were compared with the experimental results of the direct current dielectric surface breakdown, and the trends of their development agree very well.
[1] Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese)[邵 浩、 刘国治 2001 50 2387]
[2] Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990 (in Chinese) [宫玉彬、 张 章、 魏彦玉、 孟凡宝、 范植开、 王文祥 2004 53 3990]
[3] Hao J H, Ding W, Dong Z W 2006 Acta Phys. Sin. 55 4789 (in Chinese) [郝建红、 丁 武、 董志伟 2006 55 4789]
[4] Barker R J, Schamiloglu E (Translated by Zhou C M et al.) 2004 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp313—322, p350 (in Chinese) (in Chinese) [巴 克、 谢米洛格鲁著周传明等译2004 高功率微波源与技术(北京:清华大学出版社) 第313—322页,第350页]
[5] Vaughan R M 1988 IEEE Trans. ElectronDev. 35 1172
[6] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[7] Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143(in Chinese) [蔡利兵、 王建国 2010 59 1143]
[8] Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506
[9] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese) [蔡利兵、 王建国 2009 58 3268]
[10] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[11] Chang C, Liu G Z, Tang C X, Chen C H, Qiu S, Fang J Y, Hou Q 2008 Phys. Plasmas 15 093508
[12] Wang Y Z, Chen X 2007 Vacuum Technologies (2nd ed.) (Beijing: Beijing University of Aeronautics & Astronautics Press) pp168—178 (in Chinese) [王欲知、 陈 旭 2007 真空技术 (第二版) (北京: 北京航空航天大学出版社) 第168—178页]
[13] Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433—476 (in Chinese) [傅竹风、 胡友秋 1995空间等离子体数值模拟(合肥:安徽科学技术出版社)第433—476页]
[14] Verboncoeur J P, Alves M V, Vahedi V, Birdsall C K 1993 J. Comput. Phys. 104 321
[15] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
[16] Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613 (in Chinese) [李小泽、 王建国、 童长江、 张 海 2008 57 4613]
[17] Vaughan R M 1993 IEEE Trans. Electron Dev. 40 830
[18] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[19] Krile J T, Neuber A A, Dickens J C, Krompholz H G 2005 IEEE Trans. Plasma Sci. 33 1149
[20] Neuber A A, Butcher M, Krompholz H, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 1593
-
[1] Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese)[邵 浩、 刘国治 2001 50 2387]
[2] Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990 (in Chinese) [宫玉彬、 张 章、 魏彦玉、 孟凡宝、 范植开、 王文祥 2004 53 3990]
[3] Hao J H, Ding W, Dong Z W 2006 Acta Phys. Sin. 55 4789 (in Chinese) [郝建红、 丁 武、 董志伟 2006 55 4789]
[4] Barker R J, Schamiloglu E (Translated by Zhou C M et al.) 2004 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp313—322, p350 (in Chinese) (in Chinese) [巴 克、 谢米洛格鲁著周传明等译2004 高功率微波源与技术(北京:清华大学出版社) 第313—322页,第350页]
[5] Vaughan R M 1988 IEEE Trans. ElectronDev. 35 1172
[6] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[7] Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143(in Chinese) [蔡利兵、 王建国 2010 59 1143]
[8] Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506
[9] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese) [蔡利兵、 王建国 2009 58 3268]
[10] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[11] Chang C, Liu G Z, Tang C X, Chen C H, Qiu S, Fang J Y, Hou Q 2008 Phys. Plasmas 15 093508
[12] Wang Y Z, Chen X 2007 Vacuum Technologies (2nd ed.) (Beijing: Beijing University of Aeronautics & Astronautics Press) pp168—178 (in Chinese) [王欲知、 陈 旭 2007 真空技术 (第二版) (北京: 北京航空航天大学出版社) 第168—178页]
[13] Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433—476 (in Chinese) [傅竹风、 胡友秋 1995空间等离子体数值模拟(合肥:安徽科学技术出版社)第433—476页]
[14] Verboncoeur J P, Alves M V, Vahedi V, Birdsall C K 1993 J. Comput. Phys. 104 321
[15] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
[16] Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613 (in Chinese) [李小泽、 王建国、 童长江、 张 海 2008 57 4613]
[17] Vaughan R M 1993 IEEE Trans. Electron Dev. 40 830
[18] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[19] Krile J T, Neuber A A, Dickens J C, Krompholz H G 2005 IEEE Trans. Plasma Sci. 33 1149
[20] Neuber A A, Butcher M, Krompholz H, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 1593
计量
- 文章访问数: 9433
- PDF下载量: 1011
- 被引次数: 0