搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

失谐驻波管及其极高纯净驻波场性质的研究

闵琦 刘克

引用本文:
Citation:

失谐驻波管及其极高纯净驻波场性质的研究

闵琦, 刘克

Dissonant standing-wave tube and the extremely nonlinear pure standing wave field

Min Qi, Liu Ke
PDF
导出引用
  • 由直径不同的两级直圆管连接而成的两级突变截面驻波管具有失谐性,即高阶共振频率不是一阶共振频率的整数倍. 两级突变截面驻波管的失谐性质能够很好地抑制一阶共振频率激励下的大振幅非线性驻波畸变产生的高次谐波,从而获得大振幅纯净驻波场. 通过对两级突变截面驻波管失谐性质的研究,采用大功率扬声器正接等措施,利用两级突变截面驻波管的失谐性质在一阶共振频率激励下获得了184 dB的极高纯净驻波场,并对二至五阶共振频率激励下的声场进行了相应的实验研究. 在二阶、四阶共振频率激励下分别获得了180和166 dB波形比较规整的大振幅非线性驻波,并在三阶、五阶共振频率激励下观察到了谐波饱和现象和锯齿波.
    A standing-wave tube consisting of two tubes with abrupt changing diameters is dissonant, that is, its higher resonance frequencies are not integral multiples of the fundamental one. Using the dissonant property of the said standing-wave tube, the harmonics can be well suppressed and extremely pure nonlinear standing wave can be obtained at the first resonance frequency. Based on the study of the dissonant property of this standing-wave tube and by the straight connection of a high-power loudspeaker, 184 dB extremely pure nonlinear standing-wave field was obtained at the first resonance frequency. Moreover, the nonlinear standing-wave fields were experimentally investigated separately for the second resonance frequency up to the fifth. Relatively regular nonlinear standing-wave field of 180 dB was obtained at the third resonance frequency, and that of 166 dB was obtained at the fourth resonance frequency. The harmonics saturation phenomena and zigzag waveforms were observed at the third and the fifth resonance frequency, respectively.
    • 基金项目: 国家自然科学基金(批准号:10574135)和中国科学院三期知识创新工程重要方向(批准号:KJCX2-YW-W02)资助的课题.
    [1]

    Lawrenson C C, Lipkens B, Lucas T S, Perkins D K, van Doren T W 1998 J. Acoust. Soc. Am. 104 623

    [2]

    Beranek L L 1998 Acoustical Measurements (New York: American Institute of Physics) p374

    [3]

    Back S, Swift G W 1999 Nature 399 335

    [4]

    Swift G W 1988 J. Acoust. Soc. Am. 84 1145

    [5]

    Penelet G, Gusev V, Lotton P, Bruneau M 2005 Phys. Rev. E 72 016625

    [6]

    Biwa T, Tashiro Y, Mizutani U, Kozuka M, Yazaki T 2004 Phys. Rev. E 69 066304

    [7]

    Smith E 1998 Phys. Rev. E 58 2818

    [8]

    Yazaki T, Iwata A, Maekawa T, Tominaga A 1998 Phys. Rev. Lett. 31 3128

    [9]

    Gusev V E, Bailliet H, Lotton P, Job S, Bruneau M 1998 J. Acoust. Soc. Am. 103 3717

    [10]

    Ma D Y 1996 Acta Phys. Sin. 45 796 (in Chinese) [马大猷 1996 45 796]

    [11]

    Huang P T, Brisson J G 1997 J. Acoust. Soc. Am. 102 3256

    [12]

    Huang X Y, Nguyen N T, Jiao Z J 2007 J. Acoust. Soc. Am. 122 38

    [13]

    Sugimoto N, Masuda M, Hashiguchi T, Doi T 2001 J. Acoust. Soc. Am. 110 2264

    [14]

    Sugimoto N, Masuda M, Hashiguchi T 2003 J. Acoust. Soc. Am. 114 1772

    [15]

    Ilinskii Y A, Lipkens B, Lucas T S, van Doren T W, Zabolotskaya E A 1998 J. Acoust. Soc. Am. 104 2664

    [16]

    Hamilton M F, Ilinskii Y A, Zabolotskaya E A 2009 J. Acoust. Soc. Am. 125 1310

    [17]

    Chun Y D, Kim Y H 2000 J. Acoust. Soc. Am. 108 2765

    [18]

    Li X, Finkbeiner J, Raman G, Daniels C, Steinetz B M 2004 J. Acoust. Soc. Am. 116 2814

    [19]

    Min Q, Peng F, Yin Y, Liu K 2010 Acta Acustica 35 185 (in Chinese) [闵 琦、 彭 锋、 尹 铫、 刘 克 2010 声学学报 35 185]

    [20]

    Munjal M L 1987 Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design (New York: Wiley) p75

    [21]

    Gibiat V, Barjau A, Castor K, Chazaud E B 2003 Phys. Rev. E 67 066609

    [22]

    Maa D Y, Liu k 1995 J. Acoust. Soc. Am. 98 2753

  • [1]

    Lawrenson C C, Lipkens B, Lucas T S, Perkins D K, van Doren T W 1998 J. Acoust. Soc. Am. 104 623

    [2]

    Beranek L L 1998 Acoustical Measurements (New York: American Institute of Physics) p374

    [3]

    Back S, Swift G W 1999 Nature 399 335

    [4]

    Swift G W 1988 J. Acoust. Soc. Am. 84 1145

    [5]

    Penelet G, Gusev V, Lotton P, Bruneau M 2005 Phys. Rev. E 72 016625

    [6]

    Biwa T, Tashiro Y, Mizutani U, Kozuka M, Yazaki T 2004 Phys. Rev. E 69 066304

    [7]

    Smith E 1998 Phys. Rev. E 58 2818

    [8]

    Yazaki T, Iwata A, Maekawa T, Tominaga A 1998 Phys. Rev. Lett. 31 3128

    [9]

    Gusev V E, Bailliet H, Lotton P, Job S, Bruneau M 1998 J. Acoust. Soc. Am. 103 3717

    [10]

    Ma D Y 1996 Acta Phys. Sin. 45 796 (in Chinese) [马大猷 1996 45 796]

    [11]

    Huang P T, Brisson J G 1997 J. Acoust. Soc. Am. 102 3256

    [12]

    Huang X Y, Nguyen N T, Jiao Z J 2007 J. Acoust. Soc. Am. 122 38

    [13]

    Sugimoto N, Masuda M, Hashiguchi T, Doi T 2001 J. Acoust. Soc. Am. 110 2264

    [14]

    Sugimoto N, Masuda M, Hashiguchi T 2003 J. Acoust. Soc. Am. 114 1772

    [15]

    Ilinskii Y A, Lipkens B, Lucas T S, van Doren T W, Zabolotskaya E A 1998 J. Acoust. Soc. Am. 104 2664

    [16]

    Hamilton M F, Ilinskii Y A, Zabolotskaya E A 2009 J. Acoust. Soc. Am. 125 1310

    [17]

    Chun Y D, Kim Y H 2000 J. Acoust. Soc. Am. 108 2765

    [18]

    Li X, Finkbeiner J, Raman G, Daniels C, Steinetz B M 2004 J. Acoust. Soc. Am. 116 2814

    [19]

    Min Q, Peng F, Yin Y, Liu K 2010 Acta Acustica 35 185 (in Chinese) [闵 琦、 彭 锋、 尹 铫、 刘 克 2010 声学学报 35 185]

    [20]

    Munjal M L 1987 Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design (New York: Wiley) p75

    [21]

    Gibiat V, Barjau A, Castor K, Chazaud E B 2003 Phys. Rev. E 67 066609

    [22]

    Maa D Y, Liu k 1995 J. Acoust. Soc. Am. 98 2753

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析.  , 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [2] 惠丹丹, 田进寿, 卢裕, 王俊锋, 温文龙, 梁玲亮, 陈琳. 条纹变像管时间畸变的分析.  , 2016, 65(15): 158502. doi: 10.7498/aps.65.158502
    [3] 沈壮志. 声驻波场中空化泡的动力学特性.  , 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [4] 汪拓, 吴锋, 李端勇, 陈浩, 林杰. 驻波热声系统的自激振荡机理.  , 2015, 64(4): 044301. doi: 10.7498/aps.64.044301
    [5] 张宝武, 支理想, 张文涛. 基于直边衍射高斯激光驻波光学势阱仿真.  , 2012, 61(18): 183201. doi: 10.7498/aps.61.183201
    [6] 邱克强, 刘正坤, 徐向东, 刘颖, 洪义麟, 付绍军. 全息光刻中的驻波效应研究.  , 2012, 61(1): 014204. doi: 10.7498/aps.61.014204
    [7] 邵晓利, 季小玲. 截断的有振幅调制和位相畸变光束的等效曲率半径.  , 2012, 61(16): 164209. doi: 10.7498/aps.61.164209
    [8] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性.  , 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [9] 王磊, 杨华岳. 高压LDMOS晶体管准饱和效应分析与建模.  , 2010, 59(1): 571-578. doi: 10.7498/aps.59.571
    [10] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应.  , 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [11] 邹建龙, 马西奎. 一类由饱和引起的非线性现象.  , 2008, 57(2): 720-725. doi: 10.7498/aps.57.720
    [12] 徐 慧, 盛政明, 张 杰. 相对论效应对大振幅电子等离子体振荡破裂影响的数值模拟.  , 2007, 56(2): 968-976. doi: 10.7498/aps.56.968
    [13] 沈启坤, 张天平, 孙 妍. 具有死区和饱和输入的自适应混沌控制.  , 2007, 56(11): 6263-6269. doi: 10.7498/aps.56.6263
    [14] 郑春兰, 李同保, 马 艳, 马珊珊, 张宝武. 激光驻波场中Cr原子运动轨迹与汇聚沉积的分析.  , 2006, 55(9): 4528-4534. doi: 10.7498/aps.55.4528
    [15] 马 彬, 马 艳, 赵 敏, 马姗姗, 王占山. 激光驻波场中钠原子沉积图样的理论研究.  , 2006, 55(2): 667-672. doi: 10.7498/aps.55.667
    [16] 陈献忠, 姚汉民, 陈旭南. 用完全非共振光驻波聚焦原子制作纳米结构分析.  , 2005, 54(6): 2645-2652. doi: 10.7498/aps.54.2645
    [17] 马大猷. 微扰法求解非线性驻波问题.  , 1996, 45(5): 796-800. doi: 10.7498/aps.45.796
    [18] 许应凡, 陈红, 王文魁. 20m落管中Pd-Ni-P合金的过冷与过饱和固溶相的形成.  , 1992, 41(7): 1111-1118. doi: 10.7498/aps.41.1111
    [19] 钕玻璃热畸变研究组. 钕玻璃的光泵感应热畸变.  , 1978, 27(1): 22-30. doi: 10.7498/aps.27.22
    [20] 陈星弼. 关于半导体漂移三极管在饱和区工作时的储存时间问题.  , 1959, 15(7): 353-367. doi: 10.7498/aps.15.353
计量
  • 文章访问数:  8458
  • PDF下载量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-12
  • 修回日期:  2010-05-16
  • 刊出日期:  2011-01-05

/

返回文章
返回
Baidu
map