-
多孔硅由于具有较低的热导率,因而可以将其作为半导体器件中的绝热层.与其他从边界散射等复杂微观热传导机制出发建模研究多孔硅的热导率不同,将多孔硅热导率影响机制更表观地归结到孔洞的存在和分布等结构因素上,把整个多孔硅视为由硅连续材料介质和孔洞连续介质通过串联和并联组合成的复合微结构,给予其低热导率一个更为易于理解和简化的解释.进一步把孔隙率对等效热导率的影响分解为两个不同的部分,即纵向部分和横向部分,半定量地给出不同的孔洞结构和分布下孔隙率与等效热导率的关系.与实验数据进行对比后验证了模型的有效性.继而从结构的角度说明了多孔硅热导率较低的原因.Porous silicon can be used as a thermal isolation layer because of its low thermal conductivity. Different from other models based on the mechanism that the thermal conductivity of porous silicon is attributed to complex microcosmic thermal conductivity through such as boundary scattering, the model used in this paper is based on the mechanism that the low conductivity of the porous silicon material is due to its structure factors, such as the existence and distribution of pores and porous silicon is viewed as a compound microstructure piece, which is constructed by both silicon continuous material and pore continuous material medium, connecting in parallel and series patterns. Therefore, the authors give a more understandable and simpler reason why the conductivity of such a material is at such a low level. It is pointed out that the influence of porosity on equivalent thermal conductivity can be divided into two parts: vertical and horizontal, thereby giving semi-quantitative relationships between the porosity and equivalent thermal conductivity for different pore structures and distributions. A comparison between the calculated results and experimental results shows the validity of this model, thus supporting the reason why the thermal conductivity of porous silicon material is relatively low.
-
Keywords:
- porous silicon /
- thermal conductivity /
- isolation layer /
- porosity
[1] Rogalski A 2003 Prog. Quanum Electron. 27 59
[2] Tissot J L 2004 Infrar. Phys. Techn. 46 147
[3] Fièque B, Tissot J L, Trouilleau C, Crastes A, Legras O 2007 Infrar. Phys. Techn. 49 187
[4] Escriba C, Campo E, Estève D, Fourniols J Y 2005 Sensor Actuat. A 120 267
[5] Chang B K, Cai Y 2006 Infrared Imaging Array and System (Beijing: Science Press) pp19,20(in Chinese) [常本康、 蔡毅 2006 红外成像阵列与系统 (北京: 科学出版社) 第19,20页]
[6] Burzo M G, Komarov P L, Raad P E 2004 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems (New York:IEEE) p269
[7] Dou Y W, Hu M, Zong Y, Cui M 2005 Nanotechn. Precis. Eng. 3 106 (in Chinese) [窦雁巍、胡 明、 宗 杨、 崔 梦 2005 纳米技术与精密工程 3 106]
[8] Lysenko V, Gliba V, Strikha V, Dittmar A, Delhomme G, Roussel P, Barbier D, Jaffrezic-Renault N, Martelet C 1998 Appl. Surf. Sci. 123—124 458
[9] Chen G 1996 J. Heat Trans. 118 539
[10] Looyenga H 1965 Physica 31 401
[11] Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R 1997 J. Phys. D 30 2911
[12] Redondo A, Beery J G 1986 J. Appl. Phys. 60 3882
[13] Li G, Yuan N, Li J, Chen X 2006 Sensor Actuat. A 126 430
[14] Dong L, Yue R, Liu L, Xia S 2004 Sensor Actuat. A 116 257
[15] Wolf A, Brendel R 2006 Thin Solid Films 513 385
[16] Fll H, Christophersen M, Carstensen J, Hasse G 2002 Mater. Sci. Eng. 39 93
[17] Bai Y, Lan Y N, Mong Y J 2005 Acta Phys. Sin. 54 4654 (in Chinese) [白 莹、兰燕娜、莫育俊 2005 54 4654]
[18] Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾、胡 明、 张 伟、张绪瑞 2008 57 103] 〖19] Fang Z Q 2007 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [房振乾 2007 博士学位论文 (天津: 天津大学)]
[19] Zhang Y 2004 Heat Transfer Theory (Nanjin: Southeast University Press ) pp1—10 (in Chinese) [张 奕 2004 传热学 (南京: 东南大学出版社) 第1—10页]
-
[1] Rogalski A 2003 Prog. Quanum Electron. 27 59
[2] Tissot J L 2004 Infrar. Phys. Techn. 46 147
[3] Fièque B, Tissot J L, Trouilleau C, Crastes A, Legras O 2007 Infrar. Phys. Techn. 49 187
[4] Escriba C, Campo E, Estève D, Fourniols J Y 2005 Sensor Actuat. A 120 267
[5] Chang B K, Cai Y 2006 Infrared Imaging Array and System (Beijing: Science Press) pp19,20(in Chinese) [常本康、 蔡毅 2006 红外成像阵列与系统 (北京: 科学出版社) 第19,20页]
[6] Burzo M G, Komarov P L, Raad P E 2004 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems (New York:IEEE) p269
[7] Dou Y W, Hu M, Zong Y, Cui M 2005 Nanotechn. Precis. Eng. 3 106 (in Chinese) [窦雁巍、胡 明、 宗 杨、 崔 梦 2005 纳米技术与精密工程 3 106]
[8] Lysenko V, Gliba V, Strikha V, Dittmar A, Delhomme G, Roussel P, Barbier D, Jaffrezic-Renault N, Martelet C 1998 Appl. Surf. Sci. 123—124 458
[9] Chen G 1996 J. Heat Trans. 118 539
[10] Looyenga H 1965 Physica 31 401
[11] Gesele G, Linsmeier J, Drach V, Fricke J, Arens-Fischer R 1997 J. Phys. D 30 2911
[12] Redondo A, Beery J G 1986 J. Appl. Phys. 60 3882
[13] Li G, Yuan N, Li J, Chen X 2006 Sensor Actuat. A 126 430
[14] Dong L, Yue R, Liu L, Xia S 2004 Sensor Actuat. A 116 257
[15] Wolf A, Brendel R 2006 Thin Solid Films 513 385
[16] Fll H, Christophersen M, Carstensen J, Hasse G 2002 Mater. Sci. Eng. 39 93
[17] Bai Y, Lan Y N, Mong Y J 2005 Acta Phys. Sin. 54 4654 (in Chinese) [白 莹、兰燕娜、莫育俊 2005 54 4654]
[18] Fang Z Q, Hu M, Zhang W, Zhang X R 2008 Acta Phys. Sin. 57 103 (in Chinese) [房振乾、胡 明、 张 伟、张绪瑞 2008 57 103] 〖19] Fang Z Q 2007 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [房振乾 2007 博士学位论文 (天津: 天津大学)]
[19] Zhang Y 2004 Heat Transfer Theory (Nanjin: Southeast University Press ) pp1—10 (in Chinese) [张 奕 2004 传热学 (南京: 东南大学出版社) 第1—10页]
计量
- 文章访问数: 9345
- PDF下载量: 914
- 被引次数: 0