-
采用密度泛函理论(DFT)中的B3PW91方法在LANL2DZ基组水平上对WnNim (n+m≤7; m=1, 2)团簇的各种可能构型进行了几何结构优化,得出了它们的基态构型,并对其NBO、振动频率、光谱和极化率进行了理论研究.研究结果表明:W,Ni原子内部杂化现象较强,而在W-Ni原子之间杂化较弱;在W和Ni相互作用形成合金团簇的过程中,发生原子间的电荷转移,使得合金团簇中大多数Ni原子带正电荷W原子带负电荷;从光学上分析显示,W6Ni团簇的IR和Raman谱中的振动峰最多,W5Ni2的IR和Raman谱中的振动峰最强,W2Ni的IR谱中只有一个较强峰值;WnNim (n+m≤7; m=1, 2)团簇中原子间的成键相互作用随W成分的增加而增强.Possible geometrical structures of WnNim (n+m≤7; m=1, 2) clusters have been optimized by using the density functional theory (B3PW91) at the LANL2DZ level. For the ground state structures, the NBO,vibration frequencies, spectrum and polarizability are studied. The calculated results show: the hybrid phenomenon is very strong within W and Ni atoms, while weak in the W-Ni atoms. In the process of forming alloy clusters, the charge transfer happens owing to the interaction of W and Ni so that most of Ni atom is positive and while W atom is negative. The optical properties indicated, the number of the vibrational peak is the most in the IR and Raman of W6Ni cluster, the IR and raman absorption peak of W5Ni2 is the strongest and the IR absorption peak of W2Ni has only one; the bonding between atoms shows stronger with the increasing of W content in the WnNim (n+m≤7; m=1, 2) clusters.
-
Keywords:
- WnNim (n+m≤7 /
- m=1 /
- 2) Clusters /
- Electronic Structure /
- Spectram Properties /
- Density Functional Theory
[1] Feng C J, Xue Y H, Zhang X Y, Zhang X C 2009 Chin. Phys. B 18 1436
[2] Zhao L X, Feng X J, Cao T T, Liang X, Luo Y H 2009 Chin. Phys. B 18 2709
[3] Chen X, Peng X, Deng K M, Xiao C Y, Hu F L, Tan W S 2009 Acta Phys. Sin. 58 5370 (in Chinese)[陈 宣\,彭 霞\,邓开明\,肖传云\,胡凤兰\,谭伟石 2009 58 5370]
[4] Yang J, Wang N Y, Zhu D J, Chen X, Deng K M, Xiao C Y 2009 Acta Phys. Sin. 58 3112 (in Chinese)[杨 剑\,王倪颖\,朱冬玖\,陈 宣\,邓开明\,肖传云 2009 58 3112]
[5] Qi K T, Yang C L, Li B, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 6956 (in Chinese)[齐凯天\,杨传路\,李 兵\,张 岩\,盛 勇 2009 58 6956]
[6] Feng C J, Xue Y H, Zhang X Y, Zhang X C 2009 Chin. Phys. B 18 1436
[7] Panaghiotis K, Claude P, George M 2008 Phys.Rev. A 77 013201
[8] Li Z J, Li J H 2008 Chin. Phys. B 17 2951
[9] Zhang X R, Hong L L, Cui Y N, Zhang W 2009 Journal of Molecular Science 25 192 (in Chinese)[张秀荣\,洪伶俐\,崔彦娜\,张 伟 2009 分子科学学报 25 192]
[10] Thomas O C, Zheng W J, Kit B H 2001 Journal of Chemical Physics 114 5514
[11] Pramann A, Koyasu K,Nakajima A 2002 Journal of Physics Chemical A 106 2483
[12] Zhang X R, Hong L L, Gao C H 2009 Journal of Atomic and Molecular Physics 26 257 (in Chinese) [张秀荣\,洪伶俐\,高从花 2009 原子与分子 26 257]
[13] Gu J, Wang S Y, Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)[顾 娟\,王山鹰\,苟秉聪 2009 58 3338]
[14] Tang G Y, Yang X 2007 Physical Experiment of College 20 7(in Chinese)[唐国艳\,杨 雪 2007 大学物理实验 20 7]
[15] Wu Y C, Shu X, Zheng Y C 2004 Electroplating and Finishing 23 18 (in Chinese)[吴玉程\,舒 霞\,郑玉春 2004 电镀与涂饰 23 18]
[16] Gao C H, Zhang X R 2010 Journal of Computational and Theoretical Nanoscience 7 612
[17] Zhang X R, Ding X L, Fu Q, Yang J L 2008 Journal of Molecular Structure: Theochem 867 17
[18] Zhang X R, Ding X L, Dai B, Yang J L 2005 Journal of Molecular Structure: Theochem 757 113
[19] Zhang X R, Ding X L, Yang J L 2005 International Journal of Modern Physics B 15, 16 and 17 2427
[20] Weidele H, Kreisle D, Recknagel E, Icking-Konert G S, Handschuh H, Gantefor G, Eberhardt W 1995 Chem. Phys. Lett 237 425
[21] Birtwistle D T, Herzenberg A 1971 J. Phys. B 4 53
[22] Trickl T, Cromwell E F, Lee Y T, Kung A H 1989 J. Chem. Phys 91 6006
[23] Lin Q B, Li R Q, Wen Y H, Zhu Z Z 2008 Acta Phys. Sin. 57 181 (in Chinese)[林秋宝\,李仁全\, 文玉华\, 朱梓忠 2008 57 181]
-
[1] Feng C J, Xue Y H, Zhang X Y, Zhang X C 2009 Chin. Phys. B 18 1436
[2] Zhao L X, Feng X J, Cao T T, Liang X, Luo Y H 2009 Chin. Phys. B 18 2709
[3] Chen X, Peng X, Deng K M, Xiao C Y, Hu F L, Tan W S 2009 Acta Phys. Sin. 58 5370 (in Chinese)[陈 宣\,彭 霞\,邓开明\,肖传云\,胡凤兰\,谭伟石 2009 58 5370]
[4] Yang J, Wang N Y, Zhu D J, Chen X, Deng K M, Xiao C Y 2009 Acta Phys. Sin. 58 3112 (in Chinese)[杨 剑\,王倪颖\,朱冬玖\,陈 宣\,邓开明\,肖传云 2009 58 3112]
[5] Qi K T, Yang C L, Li B, Zhang Y, Sheng Y 2009 Acta Phys. Sin. 58 6956 (in Chinese)[齐凯天\,杨传路\,李 兵\,张 岩\,盛 勇 2009 58 6956]
[6] Feng C J, Xue Y H, Zhang X Y, Zhang X C 2009 Chin. Phys. B 18 1436
[7] Panaghiotis K, Claude P, George M 2008 Phys.Rev. A 77 013201
[8] Li Z J, Li J H 2008 Chin. Phys. B 17 2951
[9] Zhang X R, Hong L L, Cui Y N, Zhang W 2009 Journal of Molecular Science 25 192 (in Chinese)[张秀荣\,洪伶俐\,崔彦娜\,张 伟 2009 分子科学学报 25 192]
[10] Thomas O C, Zheng W J, Kit B H 2001 Journal of Chemical Physics 114 5514
[11] Pramann A, Koyasu K,Nakajima A 2002 Journal of Physics Chemical A 106 2483
[12] Zhang X R, Hong L L, Gao C H 2009 Journal of Atomic and Molecular Physics 26 257 (in Chinese) [张秀荣\,洪伶俐\,高从花 2009 原子与分子 26 257]
[13] Gu J, Wang S Y, Gou B C 2009 Acta Phys. Sin. 58 3338 (in Chinese)[顾 娟\,王山鹰\,苟秉聪 2009 58 3338]
[14] Tang G Y, Yang X 2007 Physical Experiment of College 20 7(in Chinese)[唐国艳\,杨 雪 2007 大学物理实验 20 7]
[15] Wu Y C, Shu X, Zheng Y C 2004 Electroplating and Finishing 23 18 (in Chinese)[吴玉程\,舒 霞\,郑玉春 2004 电镀与涂饰 23 18]
[16] Gao C H, Zhang X R 2010 Journal of Computational and Theoretical Nanoscience 7 612
[17] Zhang X R, Ding X L, Fu Q, Yang J L 2008 Journal of Molecular Structure: Theochem 867 17
[18] Zhang X R, Ding X L, Dai B, Yang J L 2005 Journal of Molecular Structure: Theochem 757 113
[19] Zhang X R, Ding X L, Yang J L 2005 International Journal of Modern Physics B 15, 16 and 17 2427
[20] Weidele H, Kreisle D, Recknagel E, Icking-Konert G S, Handschuh H, Gantefor G, Eberhardt W 1995 Chem. Phys. Lett 237 425
[21] Birtwistle D T, Herzenberg A 1971 J. Phys. B 4 53
[22] Trickl T, Cromwell E F, Lee Y T, Kung A H 1989 J. Chem. Phys 91 6006
[23] Lin Q B, Li R Q, Wen Y H, Zhu Z Z 2008 Acta Phys. Sin. 57 181 (in Chinese)[林秋宝\,李仁全\, 文玉华\, 朱梓忠 2008 57 181]
计量
- 文章访问数: 9661
- PDF下载量: 958
- 被引次数: 0