搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光滑粒子动力学方法中粒子分布与数值稳定性分析

刘谋斌 常建忠

引用本文:
Citation:

光滑粒子动力学方法中粒子分布与数值稳定性分析

刘谋斌, 常建忠

Particle distribution and numerical stability in smoothed particle hydrodynamics method

Liu Mou-Bin, Chang Jian-Zhong
PDF
导出引用
  • 光滑粒子动力学(SPH)作为一种拉格朗日型无网格粒子方法,已经成功地应用于包括含多相流动界面以及移动边界的可压缩和不可压缩流体运动的研究中.通过对Poiseuille流动的深入研究,探索了SPH方法中粒子分布对计算精度的影响,揭示了一种因为粒子不规则分布而导致的数值不稳定现象.研究显示,这种数值不稳定性起源于SPH方法粒子近似过程中的不连续性.使用了一种新的粒子近似格式以确保SPH方法中粒子近似的连续性.计算结果表明,这种新的粒子近似格式对于规则和不规则的粒子分布都能得到稳定精度的结果.
    Smoothed particle hydrodynamics(SPH) is a Lagrangian meshfree particle method, and has been widely applied to different areas including incompressible or pseudo-incompressible flows with multiphase interfaces and moving boundaries. In this paper, an instability problem has been identified when the conventional SPH method is applied to modeling the Poiseuille flow problem at long-term simulations. It is found that this instability resulted from the particle inconsistency inherent to the SPH method, which originates from the discrete particle approximation and is a fundamental cause for poor approximation accuracy. A new particle approximation approach has been used to restore the particle consistency. We show that this particle consistency restoring approach can produce stable solutions for both regular and irregular particle distributions even at long-term simulations.
    • 基金项目: 国家自然科学基金(批准号:10942004, 50976108)资助的课题.
    [1]

    [1]Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [2]

    [2]Lucy L B 1977 Astron. J. 82 1013

    [3]

    [3]Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠、刘谋斌、刘汉涛 2008 57 3954]

    [4]

    [4]Zhao Y, Ji Z Z, Feng T 2004 Acta Phys. Sin. 53 671 (in Chinese) [赵颖、季仲贞、冯涛 2004 53 671]

    [5]

    [5]Zhang A M 2008 Chin. Phys. B 17 927

    [6]

    [6]Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [7]

    [7]Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫、姚熊亮 2008 57 339]

    [8]

    [8]Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific)

    [9]

    [9]Liu M B, Liu G R, Zong Z 2008 Int. J. Comput. Meth. 5 135

    [10]

    ]Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [11]

    ]Swegle J W, Attaway S W 1995 J. Comput. Phys. 116 123

    [12]

    ]Fu X J, Qiang H F, Yang Y C 2007 Adv. Mech. 37 375 (in Chinese) [傅学金、强洪夫、杨月诚 2007 力学进展 37 375]

    [13]

    ]Morris J P 1996 Publ. Astron. Soc. Aust. 13 97

    [14]

    ]Belytschko T, Krongauz Y, Dolbow J, Gerlach C 1998 Int. J. Numer. Meth. Eng. 43 785

    [15]

    ]Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Method. Appl. Math. 139 3

    [16]

    ]Li S, Liu W K 2002 Appl. Mech. Rev. 55 1

    [17]

    ]Liu W K, Chen Y, Jun S, Chen J S, Belytschko T, Pan C, Uras R A, Chang C T 1996 Comput. Meth. Eng. 3 3

    [18]

    ]Liu M B, Liu G R, Lam K Y 2003 J. Comput. Appl. Math. 155 263

    [19]

    ]He X Y, Zhang R Y, Chen S Y, Doolen G D 1999 Phys. Fluids 11 1143

    [20]

    ]Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [21]

    ]Monaghan J J 1992 Annu. Rev. Astron. Astr. 30 543

    [22]

    ]Libersky L D, Petschek A G, Carney T C, Hipp J R, Allahdadi F A 1993 J. Comput. Phys. 109 67

    [23]

    ]Liu M B, Liu G R 2006 Appl. Numer. Math. 56 19

    [24]

    ]Monaghan J J 1982 SIAM J. Sci. Stat. Comp. 3 422

    [25]

    ]Hernquist L 1993 Astrophys. J. 404 717

    [26]

    ]Fulk D A 1994 Ph. D. Dissertation (Wright Patterson: Air Force Institute of Technology)

    [27]

    ]Morris J P 1996 Analysis of Smoothed Particle Hydrodynamics with Applications (Melbourne: Monash University)

    [28]

    ]Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [29]

    ]Tao W Q 1988 Numerical Heat Transfer (Xian: Xian Jiaotong University Press) (in Chinese) [陶文铨 1988 数值传热学 (西安:西安交通大学出版社)]

    [30]

    ]Monaghan J J 1994 J. Comput. Phys. 110 399

    [31]

    ]Liu M B, Liu G R 2005 Comput. Mech. 35 332

    [32]

    ]MathWorks Inc 2008 Matlab Partial Differential Equation Toolbox 2 (Natick: MathWorks Inc.)

    [33]

    ]Fang J N, Parriaux A 2008 J. Comput. Phys. 227 8894

  • [1]

    [1]Gingold R A, Monaghan J J 1977 Mon. Not. R. Astron. Soc. 181 375

    [2]

    [2]Lucy L B 1977 Astron. J. 82 1013

    [3]

    [3]Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠、刘谋斌、刘汉涛 2008 57 3954]

    [4]

    [4]Zhao Y, Ji Z Z, Feng T 2004 Acta Phys. Sin. 53 671 (in Chinese) [赵颖、季仲贞、冯涛 2004 53 671]

    [5]

    [5]Zhang A M 2008 Chin. Phys. B 17 927

    [6]

    [6]Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [7]

    [7]Zhang A M, Yao X L 2008 Acta Phys. Sin. 57 339 (in Chinese) [张阿漫、姚熊亮 2008 57 339]

    [8]

    [8]Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific)

    [9]

    [9]Liu M B, Liu G R, Zong Z 2008 Int. J. Comput. Meth. 5 135

    [10]

    ]Monaghan J J 2005 Rep. Prog. Phys. 68 1703

    [11]

    ]Swegle J W, Attaway S W 1995 J. Comput. Phys. 116 123

    [12]

    ]Fu X J, Qiang H F, Yang Y C 2007 Adv. Mech. 37 375 (in Chinese) [傅学金、强洪夫、杨月诚 2007 力学进展 37 375]

    [13]

    ]Morris J P 1996 Publ. Astron. Soc. Aust. 13 97

    [14]

    ]Belytschko T, Krongauz Y, Dolbow J, Gerlach C 1998 Int. J. Numer. Meth. Eng. 43 785

    [15]

    ]Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Method. Appl. Math. 139 3

    [16]

    ]Li S, Liu W K 2002 Appl. Mech. Rev. 55 1

    [17]

    ]Liu W K, Chen Y, Jun S, Chen J S, Belytschko T, Pan C, Uras R A, Chang C T 1996 Comput. Meth. Eng. 3 3

    [18]

    ]Liu M B, Liu G R, Lam K Y 2003 J. Comput. Appl. Math. 155 263

    [19]

    ]He X Y, Zhang R Y, Chen S Y, Doolen G D 1999 Phys. Fluids 11 1143

    [20]

    ]Liu M B, Xie W P, Liu G R 2005 Appl. Math. Model. 29 1252

    [21]

    ]Monaghan J J 1992 Annu. Rev. Astron. Astr. 30 543

    [22]

    ]Libersky L D, Petschek A G, Carney T C, Hipp J R, Allahdadi F A 1993 J. Comput. Phys. 109 67

    [23]

    ]Liu M B, Liu G R 2006 Appl. Numer. Math. 56 19

    [24]

    ]Monaghan J J 1982 SIAM J. Sci. Stat. Comp. 3 422

    [25]

    ]Hernquist L 1993 Astrophys. J. 404 717

    [26]

    ]Fulk D A 1994 Ph. D. Dissertation (Wright Patterson: Air Force Institute of Technology)

    [27]

    ]Morris J P 1996 Analysis of Smoothed Particle Hydrodynamics with Applications (Melbourne: Monash University)

    [28]

    ]Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [29]

    ]Tao W Q 1988 Numerical Heat Transfer (Xian: Xian Jiaotong University Press) (in Chinese) [陶文铨 1988 数值传热学 (西安:西安交通大学出版社)]

    [30]

    ]Monaghan J J 1994 J. Comput. Phys. 110 399

    [31]

    ]Liu M B, Liu G R 2005 Comput. Mech. 35 332

    [32]

    ]MathWorks Inc 2008 Matlab Partial Differential Equation Toolbox 2 (Natick: MathWorks Inc.)

    [33]

    ]Fang J N, Parriaux A 2008 J. Comput. Phys. 227 8894

  • [1] 许晓阳, 周亚丽, 余鹏. eXtended Pom-Pom黏弹性流体的改进光滑粒子动力学模拟.  , 2023, 72(3): 034701. doi: 10.7498/aps.72.20221922
    [2] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [3] 蒋涛, 陈振超, 任金莲, 李刚. 基于修正并行光滑粒子动力学方法三维变系数瞬态热传导问题的模拟.  , 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [4] 刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳. 一种新型光滑粒子动力学固壁边界施加模型.  , 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [5] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟.  , 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [6] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比.  , 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [7] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟.  , 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [8] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性.  , 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [9] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟.  , 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [10] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟.  , 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [11] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟.  , 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [12] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟.  , 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [13] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案.  , 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [14] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析.  , 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [15] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟.  , 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [16] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解.  , 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [17] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解.  , 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [18] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解.  , 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性.  , 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解.  , 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
计量
  • 文章访问数:  10298
  • PDF下载量:  1046
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-30
  • 修回日期:  2009-12-28
  • 刊出日期:  2010-03-05

/

返回文章
返回
Baidu
map