搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非正弦电流-相位关系约瑟夫森结动力学行为的分析

杨亮亮 何楷泳 戴根婷 常金琳 姜临盼 孙振源 刘建设 陈炜

引用本文:
Citation:

非正弦电流-相位关系约瑟夫森结动力学行为的分析

杨亮亮, 何楷泳, 戴根婷, 常金琳, 姜临盼, 孙振源, 刘建设, 陈炜

Numerical Analysis of Dynamical Behavior in Josephson Junctions with Non-Sinusoidal Current-Phase Relations

YANG Liangliang, HE Kaiyong, DAI Genting, CHANG Jinlin, JIANG Linpan, SUN Zhenyuan, LIU Jianshe, CHEN Wei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 约瑟夫森结作为超导电子学中的核心非线性元件,其电流相位关系(current-phase relation,CPR)直接决定了器件的动力学行为与应用潜力。传统约瑟夫森结通常表现出标准正弦型CPR,而近年来非正弦CPR的新型约瑟夫森结引起广泛关注。本论文基于实验测量的Nb/Al-AlOx/Nb结的电流电压(I-V)特性曲线,结合阻容并联约瑟夫森结模型,构建了适用于非正弦CPR的数值计算模型,系统分析了CPR倾斜对约瑟夫森结动力学特性的影响。研究表明,欠阻尼约瑟夫森结的临界电流随CPR倾斜度增加而显著降低,从而表现出类似直流超导量子干涉器件的临界电流可调的特性;而在过阻尼结中,CPR倾斜对I-V曲线的影响不明显。进一步通过计算微波辐照下的I-V特性,发现非正弦CPR在过阻尼结中易于形成半整数夏皮罗台阶,验证了CPR倾斜是半整数夏皮罗台阶原因之一。此外,借助Advanced Design System (ADS)建立非线性谐振器与直流超导量子干涉器件电路仿真模型,深入探讨了非正弦CPR对约瑟夫森电感及磁通调制行为的影响。研究结果表明,不同CPR的约瑟夫森结显著扩展了超导量子比特、参量放大器以及无磁非互易器件的设计自由度,展示了开发新型超导电子器件的广阔前景。
    As the core nonlinear element underpinning superconducting electronics, the Josephson junction is characterized by its current-phase relation (CPR), which fundamentally determines the dynamical properties and functional capabilities of superconducting quantum devices. Traditional Josephson junctions typically exhibit a conventional sinusoidal CPR; however, junctions characterized by non-sinusoidal CPR have recently attracted considerable attention due to their distinctive physical properties and promising quantum device applications. In this study, we developed a numerical model tailored specifically for junctions exhibiting non-sinusoidal CPR by integrating experimentally measured current-voltage (I-V) characteristics from Nb/Al-AlOx/Nb junctions into a resistively and capacitively shunted junction (RCSJ) framework. Leveraging this refined model, we systematically explored the influence of CPR skewness on Josephson junction dynamics. Our results reveal that, in underdamped junctions, the critical current significantly diminishes with increasing CPR skewness, a behavior reminiscent of the tunable critical currents typically observed in DC superconducting quantum interference devices (SQUID). Conversely, in overdamped junctions, the influence of CPR skewness on the I-V characteristics is found to be negligible. However, our numerical simulations under microwave irradiation reveal that nonsinusoidal CPRs readily promote the emergence of half-integer Shapiro steps in overdamped junctions, thereby establishing CPR skewness as a plausible microscopic origin for this phenomenon. In addition, we employed Advanced Design System (ADS) simulations to model nonlinear resonators and DC SQUID circuits, offering a detailed investigation into how nonsinusoidal CPRs modulate the Josephson inductance and magnetic flux response. Our findings reveal that engineering the CPR of Josephson junctions provides substantial flexibility in the design of superconducting qubits, parametric amplifiers, and non-magnetic nonreciprocal devices. This tunability underscores significant opportunities for the development of next-generation superconducting electronic components. Josephson junctions with engineered CPR offer expanded functionality for superconducting quantum technologies. This study shows that tailoring CPR enables enhanced control over the dynamical behavior of junctions, facilitating optimized designs of superconducting qubits, parametric amplifiers, and nonmagnetic nonreciprocal devices.
  • [1]

    Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerreiro T, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jensen K, Jiang Z, Kelly J, Klimov P V, Knysh S, Korotkov A N, Kostritsa F, Landhuis D, Lindmark M, Lucero E, MacKay D, Martin O, McClean J R, McEwen M, Megrant A, Mi X, Morvan A, Neeley M, Neill C, Neven H, Niu M Y, O’Brien T, Ostby E, Petukhov A, Putterman H, Quintana C, Redd C, Rieffel E G, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Zhang Y, Zhong Y, Martinis J M 2019 Nature 574505

    [2]

    Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo Q, Han L, Hong L, Huang T, Huo Y H, Li C, Li L, Li N, Li S, Li Y, Liang H, Lin J, Lin Z, Qian H, Rong H, Su H, Sun Y, Wang H, Wang S, Wu D, Xu Y, Yan Z, Yang F, Ye Y, Ying C, Yu J, Zha C, Zhai H, Zhang H, Zhang K, Zhang L, Zhang Y, Zhao P, Zhao Y, Zheng D, Zhou H, Zhu Q, Pan J W 2021 Phys. Rev. Lett. 127180501

    [3]

    Renger M, Pogorzalek S, Chen Q, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F, Fedorov K G, Wulf M, Goetz J, Wulschner F, Eder P, Fischer M, Haeberlein M, Schneider A, Wegscheider W, Menzel E P, Rotzinger H, Fowler A G, Wilhelm F K, Michler P 2021 npj Quantum Information 7160

    [4]

    Yang L, He K, Dai G, Cheng M, Liu J, Chen W 2025 J. Supercond. Nov. Magn. 38101

    [5]

    He K, Dai G, Yu Q, He Y, Zhao C, Liu J, Chen W 2023 Supercond. Sci. Technol. 36045010

    [6]

    Xue H, Lin Z, Jiang W, Niu Z, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30068503

    [7]

    Choi G, Kim B, Choi J, Park K, Chong Y, Lee Y H 2023 IEEE Trans. Appl. Supercond. 331

    [8]

    Qiu J Y, Grimsmo A, Peng K, Kannan B, Lienhard B, Sung Y, Krantz P, Bolkhovsky V, Calusine G, Kim D, Oliver W D 2023 Nat. Phys. 19706

    [9]

    Macklin C, O’Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350307

    [10]

    Krylov G, Friedman E G 2021 IEEE Trans. Appl. Supercond. 311

    [11]

    Clarke J, Braginski A I 2006 The SQUID Handbook: Applications of SQUIDs and SQUID Systems (John Wiley & Sons)

    [12]

    Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C, Han W 2021 Phys. Rev. B 104104414

    [13]

    Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121177702

    [14]

    Raes B, Tubsrinuan N, Sreedhar R, Guala D S, Panghotra R, Dausy H, de Souza Silva C C, Van de Vondel J 2020 Phys. Rev. B 102054507

    [15]

    Basset J, Kuzmanović M, Virtanen P, Heikkilä T T, Estève J, Gabelli J, Strunk C, Aprili M 2019 Phys. Rev. Res. 1032009

    [16]

    Kalantre S S, Yu F, Wei M T, Watanabe K, Taniguchi T, Hernandez-Rivera M, Amet F, Williams J R 2020 Phys. Rev. Res. 2023093

    [17]

    Ueda K, Matsuo S, Kamata H, Sato Y, Takeshige Y, Li K, Samuelson L, Xu H, Tarucha S 2020 Phys. Rev. Res. 2033435

    [18]

    Hart S, Cui Z, Ménard G, Deng M, Antipov A E, Lutchyn R M, Krogstrup P, Marcus C M, Moler K A 2019 Phys. Rev. B 100064523

    [19]

    Spanton E M, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J, Marcus C M, Moler K A 2017 Nat. Phys. 131177

    [20]

    Nanda G, Aguilera-Servin J L, Rakyta P, Kormányos A, Kleiner R, Koelle D, Watanabe K, Taniguchi T, Vandersypen L M K, Goswami S 2017 Nano Lett. 173396

    [21]

    English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N, Van Harlingen D J 2016 Phys. Rev. B 94115435

    [22]

    Borzenets I V, Amet F, Ke C T, Draelos A W, Wei M T, Seredinski A, Watanabe K, Taniguchi T, Bomze Y, Yamamoto M, Finkelstein G 2016 Phys. Rev. Lett. 117237002

    [23]

    Lee G H, Kim S, Jhi S H, Lee H J 2015 Nat. Commun. 66181

    [24]

    Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z Q, Zhang F 2018 Phys. Rev. Lett. 120177704

    [25]

    Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121097701

    [26]

    Li C, de Boer J C, de Ronde B, Ramankutty S V, van Heumen E, Huang Y, de Visser A, Golubov A A, Golden M S, Brinkman A 2018 Nat. Mater. 17875

    [27]

    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Molenkamp L W 2016 Nat. Commun. 710303

    [28]

    Hou Y L, Wang X, Sun X P, Lü L 2023 Acta Phys. Sin. 727. (in Chinese) [侯延亮,王翔,孙晓培, 吕力2023 727]

    [29]

    Wiedenmann J 2018 Induced Topological Superconductivity in HgTe Based Nanostructures. Ph.D. Dissertation, Julius-Maximilians-Universität Würzburg. Chapter 12, p.73

    [30]

    Bordin A, Liu C X, Dvir T, Zatelli F, Ten Haaf S L D, van Driel D, Wang G, Van Loo N, Zhang Y, Wolff J C, Kouwenhoven L P 2025 Nat. Nanotechnol. 1In press

    [31]

    Tanaka Y, Tamura S, Cayao J 2024 Prog. Theor. Exp. Phys. 202408C105

    [32]

    Zhu P, Feng S, Wang K, Xiang T, Trivedi N 2025 Nat. Commun. 162420

    [33]

    Yang L, He K, Dai G, Cheng M, Geng X, Jiang L, Chang J, Liu J, Chen W 2025 Phys. Lett. A 540130401

    [34]

    Kamal A, Clarke J, Devoret M H 2011 Nat. Phys. 7311

    [35]

    Kumar N P, Le D T, Pakkiam P, Stace T M, Fedorov A 2025 Phys. Rev. Res. 7013075

    [36]

    Khaira N K 2022 Reconfigurable Cryogenic Microwave Devices Using Low Temperature Superconducting RF-SQUIDs. Ph.d. dissertation, University of Waterloo

    [37]

    Ingla-Aynés J, Hou Y, Wang S, Chu E D, Mukhanov O A, Wei P, Moodera J S 2025 Nat. Electron. 1In press

    [38]

    Nadeem M, Fuhrer M S, Wang X 2023 Nat. Rev. Phys. 5558

    [39]

    Hou Y, Nichele F, Chi H, Lodesani A, Wu Y, Ritter M F, Haxell D Z, Davydova M, Ilić S, GlezakouElbert O 2023 Phys. Rev. Lett. 131027001

    [40]

    Castellani M, Medeiros O, Buzzi A, Foster R A, Colangelo M, Berggren K K 2024 Nat. Electron. 8417

    [41]

    Kayyalha M, Kazakov A, Miotkowski I, Khlebnikov S, Rokhinson L P, Chen Y P 2020 npj Quantum Mater. 57

    [42]

    Huang Z, Elfeky B H, Taniguchi T, Watanabe K, Shabani J, Shahrjerdi D 2023 Appl. Phys. Lett. 122262601

    [43]

    Panghotra R, Raes B, de Souza Silva C C, Cools I, Van de Vondel J 2020 Commun. Phys. 3169

    [44]

    Frattini N E, Vool U, Shankar S, Narla A, Sliwa K M, Devoret M H 2017 Appl. Phys. Lett. 110222603

    [45]

    Ranadive A, Esposito M, Planat L, Bonet E, Naud C, Buisson O, Guichard W, Roch N 2022 Nat. Commun. 131737

    [46]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 46564

    [47]

    Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6296

    [48]

    Josephson B D 1962 Phys. Lett. 1251

    [49]

    Prance J R, Thompson M D 2023 Appl. Phys. Lett. 122222602

  • [1] 侯延亮, 王翔, 孙晓培, 吕力. 基于拓扑绝缘体纳米线约瑟夫森结的反常临界超流增强和半整数夏皮洛台阶.  , doi: 10.7498/aps.72.20222072
    [2] 张定, 朱玉莹, 汪恒, 薛其坤. 转角铜氧化物中的约瑟夫森效应.  , doi: 10.7498/aps.72.20231815
    [3] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺.  , doi: 10.7498/aps.71.20220820
    [4] 李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任洁, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰. 中国超导电子学研究及应用进展.  , doi: 10.7498/aps.70.20202121
    [5] 韩金舸, 欧阳鹏辉, 李恩平, 王轶文, 韦联福. 超导约瑟夫森结物理参数的实验推算.  , doi: 10.7498/aps.70.20210393
    [6] 陈恒杰, 薛航, 李邵雄, 王镇. 一种通过约瑟夫森结非线性频率响应确定微波耗散的方法.  , doi: 10.7498/aps.68.20190167
    [7] 王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇. 用于精密测量玻尔兹曼常数的量子电压噪声源芯片研制.  , doi: 10.7498/aps.67.20172643
    [8] 王松, 王星云, 周章渝, 杨发顺, 杨健, 傅兴华. 硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用.  , doi: 10.7498/aps.65.017401
    [9] 陈钊, 何根芳, 张青雅, 刘建设, 李铁夫, 陈炜. 具有Washer型输入线圈的超导量子干涉放大器的制备与表征.  , doi: 10.7498/aps.64.128501
    [10] 曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛. 用于电压基准的Nb/NbxSi1-x/Nb约瑟夫森单结的研制.  , doi: 10.7498/aps.61.170304
    [11] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化.  , doi: 10.7498/aps.60.060306
    [12] 张立森, 蔡理, 冯朝文. 约瑟夫森结中周期解及其稳定性的解析分析.  , doi: 10.7498/aps.60.030308
    [13] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究.  , doi: 10.7498/aps.59.1282
    [14] 岳宏卫, 王争, 樊彬, 宋凤斌, 游峰, 赵新杰, 何明, 方兰, 阎少林. 高温超导双晶约瑟夫森结阵列毫米波相干辐射.  , doi: 10.7498/aps.59.5755
    [15] 王争, 岳宏卫, 周铁戈, 赵新杰, 何明, 谢清连, 方兰, 阎少林. SrTiO3基片上Tl-2212双晶约瑟夫森结的动态特性及噪声影响研究.  , doi: 10.7498/aps.58.7216
    [16] 崔大健, 林德华, 于海峰, 彭智慧, 朱晓波, 郑东宁, 景秀年, 吕 力, 赵士平. 本征约瑟夫森结跳变电流分布的量子修正.  , doi: 10.7498/aps.57.5933
    [17] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠.  , doi: 10.7498/aps.55.1580
    [18] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质.  , doi: 10.7498/aps.55.547
    [19] 王震宇, 廖红印, 周世平. 直流偏置的与RLC谐振器耦合的约瑟夫森结动力学行为的数值模拟.  , doi: 10.7498/aps.50.1996
    [20] 韩 冰, 陈赓华, 徐凤枝, 赵士平, 杨乾声. 高温超导台阶结YBCO dc-SQUID一阶平面梯度计.  , doi: 10.7498/aps.49.2051
计量
  • 文章访问数:  47
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-28

/

返回文章
返回
Baidu
map