-
约瑟夫森结作为超导电子学中的核心非线性元件,其电流相位关系(current-phase relation,CPR)直接决定了器件的动力学行为与应用潜力。传统约瑟夫森结通常表现出标准正弦型CPR,而近年来非正弦CPR的新型约瑟夫森结引起广泛关注。本论文基于实验测量的Nb/Al-AlOx/Nb结的电流电压(I-V)特性曲线,结合阻容并联约瑟夫森结模型,构建了适用于非正弦CPR的数值计算模型,系统分析了CPR倾斜对约瑟夫森结动力学特性的影响。研究表明,欠阻尼约瑟夫森结的临界电流随CPR倾斜度增加而显著降低,从而表现出类似直流超导量子干涉器件的临界电流可调的特性;而在过阻尼结中,CPR倾斜对I-V曲线的影响不明显。进一步通过计算微波辐照下的I-V特性,发现非正弦CPR在过阻尼结中易于形成半整数夏皮罗台阶,验证了CPR倾斜是半整数夏皮罗台阶原因之一。此外,借助Advanced Design System (ADS)建立非线性谐振器与直流超导量子干涉器件电路仿真模型,深入探讨了非正弦CPR对约瑟夫森电感及磁通调制行为的影响。研究结果表明,不同CPR的约瑟夫森结显著扩展了超导量子比特、参量放大器以及无磁非互易器件的设计自由度,展示了开发新型超导电子器件的广阔前景。As the core nonlinear element underpinning superconducting electronics, the Josephson junction is characterized by its current-phase relation (CPR), which fundamentally determines the dynamical properties and functional capabilities of superconducting quantum devices. Traditional Josephson junctions typically exhibit a conventional sinusoidal CPR; however, junctions characterized by non-sinusoidal CPR have recently attracted considerable attention due to their distinctive physical properties and promising quantum device applications. In this study, we developed a numerical model tailored specifically for junctions exhibiting non-sinusoidal CPR by integrating experimentally measured current-voltage (I-V) characteristics from Nb/Al-AlOx/Nb junctions into a resistively and capacitively shunted junction (RCSJ) framework. Leveraging this refined model, we systematically explored the influence of CPR skewness on Josephson junction dynamics. Our results reveal that, in underdamped junctions, the critical current significantly diminishes with increasing CPR skewness, a behavior reminiscent of the tunable critical currents typically observed in DC superconducting quantum interference devices (SQUID). Conversely, in overdamped junctions, the influence of CPR skewness on the I-V characteristics is found to be negligible. However, our numerical simulations under microwave irradiation reveal that nonsinusoidal CPRs readily promote the emergence of half-integer Shapiro steps in overdamped junctions, thereby establishing CPR skewness as a plausible microscopic origin for this phenomenon. In addition, we employed Advanced Design System (ADS) simulations to model nonlinear resonators and DC SQUID circuits, offering a detailed investigation into how nonsinusoidal CPRs modulate the Josephson inductance and magnetic flux response. Our findings reveal that engineering the CPR of Josephson junctions provides substantial flexibility in the design of superconducting qubits, parametric amplifiers, and non-magnetic nonreciprocal devices. This tunability underscores significant opportunities for the development of next-generation superconducting electronic components. Josephson junctions with engineered CPR offer expanded functionality for superconducting quantum technologies. This study shows that tailoring CPR enables enhanced control over the dynamical behavior of junctions, facilitating optimized designs of superconducting qubits, parametric amplifiers, and nonmagnetic nonreciprocal devices.
-
Keywords:
- Josephson junction /
- Half-integer Shapiro steps /
- RCSJ model /
- DC-SQUID /
- Superconducting electronics
-
[1] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G S L, Buell D A, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerreiro T, Habegger S, Harrigan M P, Hartmann M J, Ho A, Hoffmann M, Huang T, Humble T S, Isakov S V, Jeffrey E, Jensen K, Jiang Z, Kelly J, Klimov P V, Knysh S, Korotkov A N, Kostritsa F, Landhuis D, Lindmark M, Lucero E, MacKay D, Martin O, McClean J R, McEwen M, Megrant A, Mi X, Morvan A, Neeley M, Neill C, Neven H, Niu M Y, O’Brien T, Ostby E, Petukhov A, Putterman H, Quintana C, Redd C, Rieffel E G, Sank D, Satzinger K J, Smelyanskiy V, Sung K J, Trevithick M D, Vainsencher A, Villalonga B, White T, Yao Z J, Yeh P, Zalcman A, Zhang Y, Zhong Y, Martinis J M 2019 Nature 574505
[2] Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo Q, Han L, Hong L, Huang T, Huo Y H, Li C, Li L, Li N, Li S, Li Y, Liang H, Lin J, Lin Z, Qian H, Rong H, Su H, Sun Y, Wang H, Wang S, Wu D, Xu Y, Yan Z, Yang F, Ye Y, Ying C, Yu J, Zha C, Zhai H, Zhang H, Zhang K, Zhang L, Zhang Y, Zhao P, Zhao Y, Zheng D, Zhou H, Zhu Q, Pan J W 2021 Phys. Rev. Lett. 127180501
[3] Renger M, Pogorzalek S, Chen Q, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F, Fedorov K G, Wulf M, Goetz J, Wulschner F, Eder P, Fischer M, Haeberlein M, Schneider A, Wegscheider W, Menzel E P, Rotzinger H, Fowler A G, Wilhelm F K, Michler P 2021 npj Quantum Information 7160
[4] Yang L, He K, Dai G, Cheng M, Liu J, Chen W 2025 J. Supercond. Nov. Magn. 38101
[5] He K, Dai G, Yu Q, He Y, Zhao C, Liu J, Chen W 2023 Supercond. Sci. Technol. 36045010
[6] Xue H, Lin Z, Jiang W, Niu Z, Liu K, Peng W, Wang Z 2021 Chin. Phys. B 30068503
[7] Choi G, Kim B, Choi J, Park K, Chong Y, Lee Y H 2023 IEEE Trans. Appl. Supercond. 331
[8] Qiu J Y, Grimsmo A, Peng K, Kannan B, Lienhard B, Sung Y, Krantz P, Bolkhovsky V, Calusine G, Kim D, Oliver W D 2023 Nat. Phys. 19706
[9] Macklin C, O’Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350307
[10] Krylov G, Friedman E G 2021 IEEE Trans. Appl. Supercond. 311
[11] Clarke J, Braginski A I 2006 The SQUID Handbook: Applications of SQUIDs and SQUID Systems (John Wiley & Sons)
[12] Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C, Han W 2021 Phys. Rev. B 104104414
[13] Stoutimore M J A, Rossolenko A N, Bolginov V V, Oboznov V A, Rusanov A Y, Baranov D S, Pugach N, Frolov S M, Ryazanov V V, Van Harlingen D J 2018 Phys. Rev. Lett. 121177702
[14] Raes B, Tubsrinuan N, Sreedhar R, Guala D S, Panghotra R, Dausy H, de Souza Silva C C, Van de Vondel J 2020 Phys. Rev. B 102054507
[15] Basset J, Kuzmanović M, Virtanen P, Heikkilä T T, Estève J, Gabelli J, Strunk C, Aprili M 2019 Phys. Rev. Res. 1032009
[16] Kalantre S S, Yu F, Wei M T, Watanabe K, Taniguchi T, Hernandez-Rivera M, Amet F, Williams J R 2020 Phys. Rev. Res. 2023093
[17] Ueda K, Matsuo S, Kamata H, Sato Y, Takeshige Y, Li K, Samuelson L, Xu H, Tarucha S 2020 Phys. Rev. Res. 2033435
[18] Hart S, Cui Z, Ménard G, Deng M, Antipov A E, Lutchyn R M, Krogstrup P, Marcus C M, Moler K A 2019 Phys. Rev. B 100064523
[19] Spanton E M, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J, Marcus C M, Moler K A 2017 Nat. Phys. 131177
[20] Nanda G, Aguilera-Servin J L, Rakyta P, Kormányos A, Kleiner R, Koelle D, Watanabe K, Taniguchi T, Vandersypen L M K, Goswami S 2017 Nano Lett. 173396
[21] English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N, Van Harlingen D J 2016 Phys. Rev. B 94115435
[22] Borzenets I V, Amet F, Ke C T, Draelos A W, Wei M T, Seredinski A, Watanabe K, Taniguchi T, Bomze Y, Yamamoto M, Finkelstein G 2016 Phys. Rev. Lett. 117237002
[23] Lee G H, Kim S, Jhi S H, Lee H J 2015 Nat. Commun. 66181
[24] Yu W, Pan W, Medlin D L, Rodriguez M A, Lee S R, Bao Z Q, Zhang F 2018 Phys. Rev. Lett. 120177704
[25] Snyder R A, Trimble C J, Rong C C, Folkes P A, Taylor P J, Williams J R 2018 Phys. Rev. Lett. 121097701
[26] Li C, de Boer J C, de Ronde B, Ramankutty S V, van Heumen E, Huang Y, de Visser A, Golubov A A, Golden M S, Brinkman A 2018 Nat. Mater. 17875
[27] Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Molenkamp L W 2016 Nat. Commun. 710303
[28] Hou Y L, Wang X, Sun X P, Lü L 2023 Acta Phys. Sin. 727. (in Chinese) [侯延亮,王翔,孙晓培, 吕力2023 727]
[29] Wiedenmann J 2018 Induced Topological Superconductivity in HgTe Based Nanostructures. Ph.D. Dissertation, Julius-Maximilians-Universität Würzburg. Chapter 12, p.73
[30] Bordin A, Liu C X, Dvir T, Zatelli F, Ten Haaf S L D, van Driel D, Wang G, Van Loo N, Zhang Y, Wolff J C, Kouwenhoven L P 2025 Nat. Nanotechnol. 1In press
[31] Tanaka Y, Tamura S, Cayao J 2024 Prog. Theor. Exp. Phys. 202408C105
[32] Zhu P, Feng S, Wang K, Xiang T, Trivedi N 2025 Nat. Commun. 162420
[33] Yang L, He K, Dai G, Cheng M, Geng X, Jiang L, Chang J, Liu J, Chen W 2025 Phys. Lett. A 540130401
[34] Kamal A, Clarke J, Devoret M H 2011 Nat. Phys. 7311
[35] Kumar N P, Le D T, Pakkiam P, Stace T M, Fedorov A 2025 Phys. Rev. Res. 7013075
[36] Khaira N K 2022 Reconfigurable Cryogenic Microwave Devices Using Low Temperature Superconducting RF-SQUIDs. Ph.d. dissertation, University of Waterloo
[37] Ingla-Aynés J, Hou Y, Wang S, Chu E D, Mukhanov O A, Wei P, Moodera J S 2025 Nat. Electron. 1In press
[38] Nadeem M, Fuhrer M S, Wang X 2023 Nat. Rev. Phys. 5558
[39] Hou Y, Nichele F, Chi H, Lodesani A, Wu Y, Ritter M F, Haxell D Z, Davydova M, Ilić S, GlezakouElbert O 2023 Phys. Rev. Lett. 131027001
[40] Castellani M, Medeiros O, Buzzi A, Foster R A, Colangelo M, Berggren K K 2024 Nat. Electron. 8417
[41] Kayyalha M, Kazakov A, Miotkowski I, Khlebnikov S, Rokhinson L P, Chen Y P 2020 npj Quantum Mater. 57
[42] Huang Z, Elfeky B H, Taniguchi T, Watanabe K, Shabani J, Shahrjerdi D 2023 Appl. Phys. Lett. 122262601
[43] Panghotra R, Raes B, de Souza Silva C C, Cools I, Van de Vondel J 2020 Commun. Phys. 3169
[44] Frattini N E, Vool U, Shankar S, Narla A, Sliwa K M, Devoret M H 2017 Appl. Phys. Lett. 110222603
[45] Ranadive A, Esposito M, Planat L, Bonet E, Naud C, Buisson O, Guichard W, Roch N 2022 Nat. Commun. 131737
[46] Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 46564
[47] Bergeal N, Vijay R, Manucharyan V E, Siddiqi I, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nat. Phys. 6296
[48] Josephson B D 1962 Phys. Lett. 1251
[49] Prance J R, Thompson M D 2023 Appl. Phys. Lett. 122222602
计量
- 文章访问数: 47
- PDF下载量: 0
- 被引次数: 0