-
光子拓扑绝缘体为光子器件的设计和应用带来了新的可能性。本文研究了基于时间反演对称性破缺的非互易光子拓扑绝缘体多层结构间的Casimir效应。讨论了该多层系统中Casimir排斥作用力的产生,以及Casimir稳定平衡回复力的实现和调控,并且着重分析了光子拓扑绝缘体光轴角度差对Casimir作用力的影响。利用多层系统间的整体相对旋转可得到Casimir作用力的不同取向及其平衡点,而系统内部各层间的光轴角度差对Casimir效应的影响趋势中存在拐点,因此可利用多层系统中的旋转自由度来精细控制Casimir相互作用。本文所提供的新的操控途径和操控自由度,在实际微纳米系统中减小Casimir效应的不良影响或利用该效应开发其对系统的调控方面具有实际意义。
-
关键词:
- 光子拓扑绝缘体 /
- Casimir效应 /
- Casimir排斥力 /
- 多层系统
The Casimir effect has received extensive theoretical and experimental research attention in recent years. It arises from the macroscopic manifestation of quantum vacuum fluctuations, and this Casimir interaction force can be an effective means of driving and controlling components in MEMS and NEMS. Since the photonic topological insulator has brought new possibilities for the design and application of photonic devices, in this work we investigate the Casimir force between the multilayer structure of non-reciprocal photonic topological insulators with broken time-reversal symmetry, and examines the influence of the dielectric tensor of the photonic topological insulator, the spatial structural parameters of the multilayer system, and the rotational degree of freedom on the Casimir force. We find that there exists Casimir repulsive force in such multilayer system, and the Casimir stable equilibrium and restoring force can be further realized and controlled. Continuous variation between anti-mirror-symmetric and mirror-symmetric configurations is examined. Both the Casimir attraction and repulsion can be generally enhanced through structural optimization by increasing layer number and individual layer thickness. Furthermore, we focus on a detailed analysis on how the optical axis angle difference within the photonic topological insulator layers can be used to adjust the Casimir force. The overall relative rotation of the multilayer system may tune the magnitude and the orientation of the Casimir force, and some inflection points can be found in the influence curve of the optical axis angle difference between internal layers of the multilayer on the Casimir force, allowing the rotational degree of freedom in the multilayer system to be used for fine-tuning the Casimir interaction. This work introduces enhanced degrees of freedom for probing and manipulating the interaction between small objects in micro/nano systems, enabling both the suppression of adverse Casimir forces and their effective utilization.-
Keywords:
- Photonic topological insulator /
- Casimir effect /
- repulsive Casimir force /
- multilayered system
-
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Qi X L and Zhang S C 2011Rev. Mod. Phys. 83 1057
[3] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009Nat. Phys. 5 398
[4] Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009Nat. Phys. 5 438
[5] Luo W and Qi X L 2013Phys. Rev. B 87 085431
[6] Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021Innovation 2 100098
[7] Haldane F D M, Raghu S 2008Phys. Rev. Lett. 100013904
[8] Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009Nature 461 772
[9] Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin 73 064201(in Chinese) [王子尧, 陈福家, 郗翔, 高振, 杨怡豪2024 73 064201]
[10] Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022Chip 1 100003
[11] Yang Y, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020Nat. Photonics 14 446
[12] Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M 2021J. Lightwave Technol. 39 7609
[13] Tschernig K, Jimenez-Galán Á, Christodoulides D N, Ivanov M, Busch K, Bandres M A, Perez-Leija A 2021Nat. Commun. 12 1974
[14] Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021Phys. Rev. Lett. 126 230503
[15] Dai T, Ao Y, Bao J, Mao J, Chi Y, Fu Z, You Y, Chen X, Zhai C, Tang B, Yang Y, Li Z, Yuan L, Gao F, Lin X, Thompson M G, O’Brien J L, Li Y, Hu X, Gong Q, Wang J 2022Nat. Photonics 16 248
[16] Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022Laser Photonics Rev. 16 2100300
[17] Lustig E, Maczewsky L J, Beck J, Biesenthal T, Heinrich M, Yang Z, Plotnik Y, Szameit A, Segev M 2022Nature 609 931
[18] Teo H T, Xue H, Zhang B 2022Phys. Rev. A 105 053510
[19] Devi K M, Jana S, Chowdhury D R 2021Opt. Mater. Express 11 2445
[20] Casimir H B G 1948Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793
[21] Palasantzas G, Sedighi M, Svetovoy V B 2020Appl. Phys. Lett. 117 120501
[22] Vasilyev O A, Marino E, Kluft B B, Schall P, Kondrat S 2021Nanoscale 13 6475
[23] Zhou S, Liu K P, Dai S W, Ge L X 2025 Acta Phys. Sin 74 014202(in Chinese) [周帅, 柳开鹏, 戴士为, 葛力新2025 74 014202]
[24] Zeng R, Wang C, Zeng X, Li H, Yang S, Li Q, Yang Y 2020Opt. Express 28 7425
[25] Küçüköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J, Shegai T O 2024Sci. Adv. 10 eadn1825
[26] Grushin A G, Cortijo A 2011Phys. Rev. Lett. 106 020403
[27] Fuchs S, Lindel F, Krems R V, Hanson G W, Antezza M, Buhmann S Y 2017Phys. Rev. A 96 062505
[28] Lindel F, Hanson G W, Antezza M, Buhmann S Y 2018Phys. Rev. B 98 144101
[29] Masyukov M S, Grebenchukov A N 2021Phys. Rev. B 104 165308
[30] Nefedov I S, Valagiannopoulos C A, Melnikov L A 2013J. Opt., 15 114003
[31] Zeng R, Chen L, Nie W, Bi M, Yang Y, Zhu S 2016Phys. Lett. A 380 2861
[32] Chiadini F, Fiumara V, Lakhtakia A, Scaglione A 2019 Appl. Opt. 58 1724
[33] Zeng R, Gao T, Ni P, Fang S, Li H, Yang S, Zeng Z 2024J. Opt. 26 075602
[34] Kenneth O, Klich I 2006Phys. Rev. Lett. 97 160401
[35] Silveirinha M G 2015Phys. Rev. B 92 125153
[36] Xu J, He P, Feng D, Luo Y, Fan S, Yong K, Tsakmakidis K L 2023Opt. Express 31 42388
[37] Holmes A M, Sabbaghi M, Hanson G W 2021Phys. Rev. B 104 214433
[38] Bittencourt J A 2004Fundamentals of Plasma Physics (Springer, New York)
[39] Silveirinha M G, Terças H, Antezza M 2023Phys. Rev. B 108 235154
计量
- 文章访问数: 50
- PDF下载量: 3
- 被引次数: 0