搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子拓扑绝缘体多层系统中的Casimir效应

曾然 方世超 高泰吉 李浩珍 杨淑娜 羊亚平

引用本文:
Citation:

光子拓扑绝缘体多层系统中的Casimir效应

曾然, 方世超, 高泰吉, 李浩珍, 杨淑娜, 羊亚平

Casimir Effect in Photonic Topological Insulator Multilayered System

Zeng Ran, Fang Shi-Chao, Gao Tai-Ji, Li Hao-Zhen, Yang Shu-Na, Yang Ya-Ping
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 光子拓扑绝缘体为光子器件的设计和应用带来了新的可能性。本文研究了基于时间反演对称性破缺的非互易光子拓扑绝缘体多层结构间的Casimir效应。讨论了该多层系统中Casimir排斥作用力的产生,以及Casimir稳定平衡回复力的实现和调控,并且着重分析了光子拓扑绝缘体光轴角度差对Casimir作用力的影响。利用多层系统间的整体相对旋转可得到Casimir作用力的不同取向及其平衡点,而系统内部各层间的光轴角度差对Casimir效应的影响趋势中存在拐点,因此可利用多层系统中的旋转自由度来精细控制Casimir相互作用。本文所提供的新的操控途径和操控自由度,在实际微纳米系统中减小Casimir效应的不良影响或利用该效应开发其对系统的调控方面具有实际意义。
    The Casimir effect has received extensive theoretical and experimental research attention in recent years. It arises from the macroscopic manifestation of quantum vacuum fluctuations, and this Casimir interaction force can be an effective means of driving and controlling components in MEMS and NEMS. Since the photonic topological insulator has brought new possibilities for the design and application of photonic devices, in this work we investigate the Casimir force between the multilayer structure of non-reciprocal photonic topological insulators with broken time-reversal symmetry, and examines the influence of the dielectric tensor of the photonic topological insulator, the spatial structural parameters of the multilayer system, and the rotational degree of freedom on the Casimir force. We find that there exists Casimir repulsive force in such multilayer system, and the Casimir stable equilibrium and restoring force can be further realized and controlled. Continuous variation between anti-mirror-symmetric and mirror-symmetric configurations is examined. Both the Casimir attraction and repulsion can be generally enhanced through structural optimization by increasing layer number and individual layer thickness. Furthermore, we focus on a detailed analysis on how the optical axis angle difference within the photonic topological insulator layers can be used to adjust the Casimir force. The overall relative rotation of the multilayer system may tune the magnitude and the orientation of the Casimir force, and some inflection points can be found in the influence curve of the optical axis angle difference between internal layers of the multilayer on the Casimir force, allowing the rotational degree of freedom in the multilayer system to be used for fine-tuning the Casimir interaction. This work introduces enhanced degrees of freedom for probing and manipulating the interaction between small objects in micro/nano systems, enabling both the suppression of adverse Casimir forces and their effective utilization.
  • [1]

    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Qi X L and Zhang S C 2011Rev. Mod. Phys. 83 1057

    [3]

    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009Nat. Phys. 5 398

    [4]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009Nat. Phys. 5 438

    [5]

    Luo W and Qi X L 2013Phys. Rev. B 87 085431

    [6]

    Wang P, Ge J, Li J, Liu Y, Xu Y, Wang J 2021Innovation 2 100098

    [7]

    Haldane F D M, Raghu S 2008Phys. Rev. Lett. 100013904

    [8]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009Nature 461 772

    [9]

    Wang Z Y, Chen F J, Xi X, Gao Z, Yang Y H 2024 Acta Phys. Sin 73 064201(in Chinese) [王子尧, 陈福家, 郗翔, 高振, 杨怡豪2024 73 064201]

    [10]

    Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022Chip 1 100003

    [11]

    Yang Y, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020Nat. Photonics 14 446

    [12]

    Webber J, Yamagami Y, Ducournau G, Szriftgiser P, Iyoda K, Fujita M 2021J. Lightwave Technol. 39 7609

    [13]

    Tschernig K, Jimenez-Galán Á, Christodoulides D N, Ivanov M, Busch K, Bandres M A, Perez-Leija A 2021Nat. Commun. 12 1974

    [14]

    Chen Y, He X T, Cheng Y J, Qiu H Y, Feng L T, Zhang M, Dai D X, Guo G C, Dong J W, Ren X F 2021Phys. Rev. Lett. 126 230503

    [15]

    Dai T, Ao Y, Bao J, Mao J, Chi Y, Fu Z, You Y, Chen X, Zhai C, Tang B, Yang Y, Li Z, Yuan L, Gao F, Lin X, Thompson M G, O’Brien J L, Li Y, Hu X, Gong Q, Wang J 2022Nat. Photonics 16 248

    [16]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022Laser Photonics Rev. 16 2100300

    [17]

    Lustig E, Maczewsky L J, Beck J, Biesenthal T, Heinrich M, Yang Z, Plotnik Y, Szameit A, Segev M 2022Nature 609 931

    [18]

    Teo H T, Xue H, Zhang B 2022Phys. Rev. A 105 053510

    [19]

    Devi K M, Jana S, Chowdhury D R 2021Opt. Mater. Express 11 2445

    [20]

    Casimir H B G 1948Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 51 793

    [21]

    Palasantzas G, Sedighi M, Svetovoy V B 2020Appl. Phys. Lett. 117 120501

    [22]

    Vasilyev O A, Marino E, Kluft B B, Schall P, Kondrat S 2021Nanoscale 13 6475

    [23]

    Zhou S, Liu K P, Dai S W, Ge L X 2025 Acta Phys. Sin 74 014202(in Chinese) [周帅, 柳开鹏, 戴士为, 葛力新2025 74 014202]

    [24]

    Zeng R, Wang C, Zeng X, Li H, Yang S, Li Q, Yang Y 2020Opt. Express 28 7425

    [25]

    Küçüköz B, Kotov O V, Canales A, Polyakov A Y, Agrawal A V, Antosiewicz T J, Shegai T O 2024Sci. Adv. 10 eadn1825

    [26]

    Grushin A G, Cortijo A 2011Phys. Rev. Lett. 106 020403

    [27]

    Fuchs S, Lindel F, Krems R V, Hanson G W, Antezza M, Buhmann S Y 2017Phys. Rev. A 96 062505

    [28]

    Lindel F, Hanson G W, Antezza M, Buhmann S Y 2018Phys. Rev. B 98 144101

    [29]

    Masyukov M S, Grebenchukov A N 2021Phys. Rev. B 104 165308

    [30]

    Nefedov I S, Valagiannopoulos C A, Melnikov L A 2013J. Opt., 15 114003

    [31]

    Zeng R, Chen L, Nie W, Bi M, Yang Y, Zhu S 2016Phys. Lett. A 380 2861

    [32]

    Chiadini F, Fiumara V, Lakhtakia A, Scaglione A 2019 Appl. Opt. 58 1724

    [33]

    Zeng R, Gao T, Ni P, Fang S, Li H, Yang S, Zeng Z 2024J. Opt. 26 075602

    [34]

    Kenneth O, Klich I 2006Phys. Rev. Lett. 97 160401

    [35]

    Silveirinha M G 2015Phys. Rev. B 92 125153

    [36]

    Xu J, He P, Feng D, Luo Y, Fan S, Yong K, Tsakmakidis K L 2023Opt. Express 31 42388

    [37]

    Holmes A M, Sabbaghi M, Hanson G W 2021Phys. Rev. B 104 214433

    [38]

    Bittencourt J A 2004Fundamentals of Plasma Physics (Springer, New York)

    [39]

    Silveirinha M G, Terças H, Antezza M 2023Phys. Rev. B 108 235154

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相.  , doi: 10.7498/aps.74.20241031
    [2] 周帅, 柳开鹏, 戴士为, 葛力新. 双液体系统中的可调控Casimir平衡点.  , doi: 10.7498/aps.74.20241126
    [3] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , doi: 10.7498/aps.72.20230690
    [4] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展.  , doi: 10.7498/aps.72.20230634
    [5] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展.  , doi: 10.7498/aps.72.20230698
    [6] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质.  , doi: 10.7498/aps.64.097302
    [7] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , doi: 10.7498/aps.64.097202
    [8] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究.  , doi: 10.7498/aps.63.187303
    [9] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应.  , doi: 10.7498/aps.62.167401
    [10] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应.  , doi: 10.7498/aps.62.060302
    [11] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射.  , doi: 10.7498/aps.61.177303
    [12] 田文超, 王林滨, 贾建援. Casimir力、Hamaker力及黏附“突跳”研究.  , doi: 10.7498/aps.59.1175
    [13] 曾 然, 羊亚平, 刘树田. 负折射率材料对产生Casimir排斥力的影响.  , doi: 10.7498/aps.57.4947
    [14] 刘成周, 张昌平. 二维静态时空中Dirac场的重正化能动张量和Casimir效应.  , doi: 10.7498/aps.56.1928
    [15] 曾 然, 许静平, 羊亚平, 刘树田. 负折射率材料对Casimir效应的影响.  , doi: 10.7498/aps.56.6446
    [16] 白占武. 非平行导线型边界下Maxwell-Chern-Simons场的Casimir效应.  , doi: 10.7498/aps.53.2472
    [17] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应.  , doi: 10.7498/aps.52.813
    [18] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , doi: 10.7498/aps.51.1639
    [19] 史新, 李新洲. 立体欠缺角和排斥力.  , doi: 10.7498/aps.40.353
    [20] 薛社生, 冼鼎昌. 规范协变理论中的Casimir效应.  , doi: 10.7498/aps.34.1084
计量
  • 文章访问数:  50
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-17

/

返回文章
返回
Baidu
map