搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有吸引作用的活性布朗粒子的团簇行为和自发速度对齐

陈健丽 李佳健 艾保全

引用本文:
Citation:

具有吸引作用的活性布朗粒子的团簇行为和自发速度对齐

陈健丽, 李佳健, 艾保全

Cluster Behavior and Spontaneous Velocity Alignment of Active Brownian Particles with Attractive Interactions

Chen Jian-Li, Li Jia-Jian, Ai Bao-Quan
PDF
导出引用
  • 在活性布朗粒子系统中,速度的自发对齐是可实现的,但其机制及影响因素尚需进一步研究。本文主要探讨了具有吸引性相互作用的活性布朗粒子系统中的团簇行为和自发全局速度对齐现象。吸引性相互作用和自推进作用的耦合导致粒子趋向于与周围粒子速度对齐。通过数值模拟,本文发现自推进作用与吸引性相互作用之间的竞争显著影响团簇的形成及其结构,系统中会出现网状团簇、块状团簇、粒子离散分布或形成不稳定团簇,并进而影响自发速度对齐程度。其中,块状团簇结构最有利于自发速度对齐的实现。随着自推进作用在竞争中逐渐占优,中低填充分数系统中速度对齐程度呈现增加-稳定-下降的趋势,而高填充分数系统则表现为先稳定后下降的趋势。系统形成单一块状团簇时,能够实现自发全局速度对齐。
    Spontaneous velocity alignment can occur in active particle systems. As a fundamental inter-particle interaction, the attractive interaction has been shown to significantly affect the collective behavior of active particles. However, the mechanisms by which attractive interactions induce and influence velocity alignment remain unclear. To address this question, we conduct numerical simulations using Stochastic Euler Method to investigate cluster behavior and spontaneous global velocity alignment in active particle systems with attractive interactions. The local area fraction of particles and its corresponding probability distribution function are computed to capture the system's cluster behavior. The global velocity alignment order parameter and the polar average parameter are also calculated to characterize the particle velocity directions. Based on whether motion-induced phase separation and crystallization can be achieved, the system is categorized into low, medium, and high filling fraction regimes, and the cluster behavior and velocity alignment within each regime are systematically investigated.
    Spontaneous velocity alignment results from the coupling of self-propulsion and attractive interactions. In the persistent time, feedback regulation involving particle velocities, relative positions, and interaction forces operates simultaneously among neighboring particles. This process leads to the alignment of particle velocities with those of their neighbors, ultimately achieving large-scale alignment. The closer the particles are arranged, the more conducive it is for the coupling of self-propulsion and spatial interactions, thus promoting large-scale spontaneous velocity alignment. The competition between these two effects governs the formation and structure of clusters, ultimately influencing global velocity alignment.
    At low and medium packing fractions, when the attractive interaction dominates and self-propulsion is negligible, particles attract one another to form discrete banded clusters due to the strong attraction and limited range of interaction. Over time, these clusters connect to form a network-like cluster. Small differences in particle velocities are amplified by the banded structure, hindering velocity alignment. In systems with low packing fractions, a thin network-like cluster forms, whereas in systems with medium packing fractions, a thicker network-like cluster forms, leading to lower velocity alignment in the former. As self-propulsion becomes more dominant, the network structure loosens, causing the particle bands to break and reconnect until a more stable block-like cluster structure is formed. The system transitions from a network-like cluster to a block-like cluster, with particles becoming closely packed, resulting in global velocity alignment. When self-propulsion dominates and attraction is negligible, particle motion is primarily driven by self-propulsion, leading to sparse particle distribution or unstable clusters, which results in velocity disorder. Thus, as self-propulsion competes with attractive interactions and becomes dominant, the global velocity alignment increases from low values to a plateau at higher values and then decreases, approaching zero.
    At high packing fractions, the initial distribution of particles is dense. Even when the attractive interaction dominates and self-propulsion is negligible, the system forms a block-like cluster, leading to global velocity alignment. As self-propulsion becomes dominant, the instability of the clusters partially hinders spontaneous velocity alignment. Nevertheless, the particles remain tightly packed, resulting in local velocity alignment. Thus, as self-propulsion transitions from weak to dominant in competition with attractive interactions, global velocity alignment first plateaus at a higher value, then decreases, but remains above 0.5.
    It is important to note that the spontaneous velocity alignment discussed here exhibits a finite size effect. In experimental setups and applications involving active particles, smaller systems are commonly studied. By modulating the balance between self-propulsion and attractive interactions in these systems, a broader range of spontaneous velocity alignment can be achieved, potentially even leading to global velocity alignment.
  • [1]

    Emlen J T 1952 The Auk 69 160

    [2]

    Becco C, Vandewalle N, Delcourt J, Poncin P 2006 Phys. A 367 487

    [3]

    Fletcher D A, Geissler P L 2009 Annu. Rev. Phys. Chem. 60 469

    [4]

    Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G 2016 Rev. Mod. Phys. 88 045006

    [5]

    Paxton W F, Kistler K C, Olmeda C C, Sen A, St. Angelo S K, Cao Y, Mallouk T E, Lammert P E, Crespi V H 2004J. Am. Chem. Soc. 12613424

    [6]

    Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323

    [7]

    Nelson B J, Kaliakatsos I K, Abbott J J 2010 Annu. Rev. Biomed. Eng. 12 55

    [8]

    Yang W, Misko V R, Nelissen K, Kong M, Peeters F M 2012 Soft Matter 8 5175

    [9]

    Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A 2013 Nanoscale 5 1273

    [10]

    Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O 1995 Phys. Rev. Lett. 75 1226

    [11]

    Grégoire G, Chaté H 2004 Phys. Rev. Lett. 92 025702

    [12]

    Peruani F, Deutsch A, Bär M 2006 Phys. Rev. E 74 030904

    [13]

    Aranson I S, Tsimring L S 2003 Phys. Rev. E 67 021305

    [14]

    Ginelli F, Peruani F, Bär M, Chaté H 2010 Phys. Rev. Lett. 104 184502

    [15]

    Caprini L, Marconi U M B 2021Soft Matter 17 4109

    [16]

    Lushi E, Wioland H, Goldstein R E 2014Proc. Natl. Acad. Sci. 111 9733

    [17]

    He J X, Qin C R, Xu T L, Chen K, Tian W D 2022Acta Phys. Sin. 71150501

    [18]

    Wang J, Xu T, He J, Chen K, Tian W 2023Chin. Phys. B 32 070501

    [19]

    Xu T L, Qin C R, Tang B, Gao J C, Zhou J, Chen K, Zhang T H, Tian W D 2024 J. Chem. Phys. 161064905

    [20]

    Lam K D N T, Schindler M, Dauchot O 2015 New J. Phys. 17 113056

    [21]

    Giavazzi F, Paoluzzi M, Macchi M, Bi D, Scita G, Manning M L, Cerbino R, Marchetti M C 2018 Soft matter 14 3471

    [22]

    Caprini L, Marini Bettolo Marconi U, Puglisi A 2020 Phys. Rev. Lett. 124 078001

    [23]

    Caprini L, Marconi U M B, Maggi C, Paoluzzi M, Puglisi A 2020 Phys. Rev. Res. 2 023321

    [24]

    Kopp R A, Klapp S H 2023Europhys. Lett. 143 17002

    [25]

    Caprini L, Löwen H 2023 Phys. Rev. Lett. 130 148202

    [26]

    Chakraborty S, Das S K 2020 J. Chem. Phys. 153 044905

    [27]

    Barberis L, Peruani F 2019 J. Chem. Phys. 150144905

    [28]

    Hrishikesh B, Mani E 2023 Soft Matter 19 225

    [29]

    Hrishikesh B, Mani E 2022 Phys. Chem. Chem. Phys. 24 19792

    [30]

    Du Q, Faber V, Gunzburger M 1999 SIAM Rev. 41 637

    [31]

    Digregorio P, Levis D, Suma A, Cugliandolo L F, Gonnella G, Pagonabarraga I 2018Phys. Rev. Lett. 121 098003

    [32]

    Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi A, Parisi G, Procaccini A, Viale M, Zdravkovic V 2008 Proc. Natl. Acad. Sci. 105 1232

    [33]

    Alert R, Trepat X 2020 Annu. Rev. Condens. Matter Phys. 11 77

  • [1] 王路生, 罗龙, 刘浩, 杨鑫, 丁军, 宋鹍, 路世青, 黄霞. 冲击速度对单晶镍层裂行为的影响规律及作用机制.  , doi: 10.7498/aps.73.20240244
    [2] 黄雪峰, 刘敏, 卢山, 张敏琦, 李盛姬, 罗丹. 强吸收纳米粒子团簇的光泳力悬浮及热泳力下的迁移行为.  , doi: 10.7498/aps.73.20240288
    [3] 夏益祺, 谌庄琳, 郭永坤. 柔性棘轮在活性粒子浴内的自发定向转动.  , doi: 10.7498/aps.68.20190425
    [4] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究.  , doi: 10.7498/aps.65.014502
    [5] 张春艳, 刘显明. 氢团簇在飞秒强激光场中的动力学行为.  , doi: 10.7498/aps.64.163601
    [6] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究.  , doi: 10.7498/aps.62.193104
    [7] 梁林云, 吕广宏. 金属铁中空位团簇演化行为的相场研究.  , doi: 10.7498/aps.62.182801
    [8] 丁学成, 傅广生, 褚立志, 邓泽超, 梁伟华, 赵亚军, 王英龙. 环境气体种类对激光烧蚀粒子速度劈裂的影响.  , doi: 10.7498/aps.61.155207
    [9] 李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成. 初始温度和冷却速率对金属团簇凝固行为的影响.  , doi: 10.7498/aps.60.093601
    [10] 类成新, 冯东太, 吴振森. 掺杂对随机分布团簇粒子缪勒矩阵的影响.  , doi: 10.7498/aps.60.115202
    [11] 丁学成, 傅广生, 梁伟华, 褚立志, 邓泽超, 王英龙. 初始溅射粒子密度对烧蚀粒子密度和速度分布的影响.  , doi: 10.7498/aps.59.3331
    [12] 类成新, 吴振森. 随机分布烟尘团簇粒子辐射特性研究.  , doi: 10.7498/aps.59.5692
    [13] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟.  , doi: 10.7498/aps.58.4826
    [14] 陶朝海, 陆君安. 混沌系统的速度反馈同步.  , doi: 10.7498/aps.54.5058
    [15] 乐仁昌, 林刚勇. 理想条件下氦氡团簇离子垂直移动速度的理论计算.  , doi: 10.7498/aps.54.4113
    [16] 邓茂林, 洪明潮, 朱位秋, 汪元美. 活性布朗粒子运动的稳态解.  , doi: 10.7498/aps.53.2029
    [17] 刘建胜, 李儒新, 朱频频, 徐至展, 刘晶儒. 大尺寸团簇在超短超强激光场中的动力学行为.  , doi: 10.7498/aps.50.1121
    [18] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波.  , doi: 10.7498/aps.50.1512
    [19] 法伟, 罗成林. 硅团簇结构和碎片行为的紧束缚理论方法.  , doi: 10.7498/aps.49.430
    [20] 傅新宇, 董家齐, 应纯同, 刘广均. 平行速度剪切驱动湍流引起的粒子输运.  , doi: 10.7498/aps.46.474
计量
  • 文章访问数:  261
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回
Baidu
map