搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击加载下V形界面的失稳与湍流混合

李俊涛 孙宇涛 潘建华 任玉新

引用本文:
Citation:

冲击加载下V形界面的失稳与湍流混合

李俊涛, 孙宇涛, 潘建华, 任玉新

Instability and turbulent mixing of shocked V shaped interface

Li Jun-Tao, Sun Yu-Tao, Pan Jian-Hua, Ren Yu-Xin
PDF
导出引用
  • 采用多组分混合物质量分数模型和最小色散可控耗散格式的高分辨率有限体积方法,数值模拟了弱激波冲击不同角度的V形空气/SF6界面的Richtmyer-Meshkov不稳定性问题.激波冲击界面后,在界面附近沉积涡量,形成沿界面规则排列的旋涡结构,同时界面扰动发展形成气泡和尖钉结构.本文统计了界面左端移动速度和界面混合宽度增长率等特征量的演化规律,并与已有的实验结果进行了对比,两者符合较好.讨论了物质界面处的流体向湍流混合发展的过程,随着界面旋涡结构的演化,涡结构之间开始发生相互诱导、并对等现象,并逐渐聚集在几个区域,而多尺度结构也因旋涡的诱导作用在这些区域中产生.通过对由雷诺数定义的惯性尺度进行分析,发现了具有上下边界的惯性尺度区域的形成,对动能能谱的分析发现了-5/3对数率的出现,这同样说明了惯性尺度区域的形成.由于湍流混合转捩与惯性尺度区域的形成是一致的,界面附近流场将发展为湍流.
    Based on the mass fraction model of multicomponent mixture, the interactions between weak shock wave and V shaped air/SF6 interface with different vertex angles are numerical simulated. The numerical scheme used in the simulation is the high-resolution finite volume method with minimized dispersion and controllable dissipation scheme, in which the dissipation can be adjusted without affecting the already optimized dispersion property of the scheme. The grid sensitivity study is performed to guarantee that the resolution is sufficient in the numerical simulation. After the shock wave interacts with the interface, the baroclinic vorticity is deposited near the interface due to the misalignment of the density and pressure gradient, which is the manifestation of the Richtmyer-Meshkov instability, leading to the vortical structures forming along the interface. The interface perturbations lead to the bubbles and spikes appearing. The predicted leftmost interface displacement and interface width growth rate in the early stage of interface evolution agree well with the experimental results. The process of transition to turbulence at the material interface is studied in detail. The numerical results indicate that with the evolution of the interfacial vortical structure due to Kelvin-Helmholtz instability, the array of vortices begins to merge. As a result, the vortices accumulate in several distinct regions. It is in these regions that the multi-scale structures are generated because of the interaction between vortices. It is shown clearly that in the regions where vortices are accumulated, the fluctuation energy spectrum has many large and smallscale elements, which indicates there may be turbulent structures in these regions. To further examine if there is mixing transition in these regions, the characteristic length scales of the flow fields are calculated. The separation between the Lipemann-Taylor scale and inner viscous scale is observed based on the circulation-based Reynolds number, leading to the appearance of an uncoupled inertial range. The classical Kolmogorov -5/3 power law is also shown in the fluctuation energy spectrum, which means that the inertial range is developed. The appearing of this inertial range confirms that the mixing transition does occur, and the flow field near the material interface will develop into turbulence.
      通信作者: 孙宇涛, sun.yu.tao@qq.com
    • 基金项目: 国家自然科学基金(批准号:U1430235)资助的课题.
      Corresponding author: Sun Yu-Tao, sun.yu.tao@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1430235).
    [1]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 4532

    [2]

    Marble F E, Hendrics G J, Zukoski E E 1987 AIAA 871880

    [3]

    Luo X S, Zhai Z G, Si T, Yang J M 2014 Adv. Mech. 44 201407 (in Chinese)[罗喜胜, 翟志刚, 司廷, 杨基明2014力学进展 44 201407]

    [4]

    Rudinger G, Somers L M 1960 J. Fluid Mech. 7 161

    [5]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41

    [6]

    Zhai Z, Si T, Luo X, Yang J M 2011 Phys. Fluids 23 084104

    [7]

    Bates K R, Nikiforakis N, Holder D 2007 Phys. Fluids 19 036101

    [8]

    Hoi D N, Hamid A, Kevin R B, Nikos N 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4158

    [9]

    Zou L Y, Liu C L, Tan D W, Huang W B, Luo X S 2010 J. Vis. 13 347

    [10]

    Fan M R, Zhai Z G, Si T, Luo X S, Zou L Y, Tan D W 2012 Sci. China:Phys. Mech. Astron. 55 284

    [11]

    Sun Z S, Ren Y X, Larricq C, Zhang S Y, Yang Y C 2011 J. Comput. Phys. 230 4616

    [12]

    Wang Q J, Ren Y X, Sun Z S, Sun Y T 2013 Sci. China:Phys. Mech. Astron. 56 423

    [13]

    Wang T, Bai J S, Li P, Tao G, Jiang Y, Zhong M 2013 Chin. J. High Pressure Phys. 2 18(in Chinese)[王涛, 柏劲松, 李平, 陶钢, 姜洋, 钟敏2013高压 2 18]

    [14]

    Shyue K M 1998 J. Comput. Phys. 142 208

    [15]

    Luo X, Dong P, Si T, Zhai Z G 2016 J. Fluid Mech. 802 186

    [16]

    Rikanati A, Alon U, Shvarts D 2003 Phys. Fluids 15 3776

    [17]

    Miura A 1997 Phys. Plasmas 4 2871

    [18]

    Dimotakis P E 2000 J. Fluid Mech. 409 69

    [19]

    Zhou Y, Remington B A, Robey H F, Cook A W, Glendinning S G, Dimits A, Cabot W 2003 Phys. Plasmas 10 1883

  • [1]

    Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 4532

    [2]

    Marble F E, Hendrics G J, Zukoski E E 1987 AIAA 871880

    [3]

    Luo X S, Zhai Z G, Si T, Yang J M 2014 Adv. Mech. 44 201407 (in Chinese)[罗喜胜, 翟志刚, 司廷, 杨基明2014力学进展 44 201407]

    [4]

    Rudinger G, Somers L M 1960 J. Fluid Mech. 7 161

    [5]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41

    [6]

    Zhai Z, Si T, Luo X, Yang J M 2011 Phys. Fluids 23 084104

    [7]

    Bates K R, Nikiforakis N, Holder D 2007 Phys. Fluids 19 036101

    [8]

    Hoi D N, Hamid A, Kevin R B, Nikos N 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4158

    [9]

    Zou L Y, Liu C L, Tan D W, Huang W B, Luo X S 2010 J. Vis. 13 347

    [10]

    Fan M R, Zhai Z G, Si T, Luo X S, Zou L Y, Tan D W 2012 Sci. China:Phys. Mech. Astron. 55 284

    [11]

    Sun Z S, Ren Y X, Larricq C, Zhang S Y, Yang Y C 2011 J. Comput. Phys. 230 4616

    [12]

    Wang Q J, Ren Y X, Sun Z S, Sun Y T 2013 Sci. China:Phys. Mech. Astron. 56 423

    [13]

    Wang T, Bai J S, Li P, Tao G, Jiang Y, Zhong M 2013 Chin. J. High Pressure Phys. 2 18(in Chinese)[王涛, 柏劲松, 李平, 陶钢, 姜洋, 钟敏2013高压 2 18]

    [14]

    Shyue K M 1998 J. Comput. Phys. 142 208

    [15]

    Luo X, Dong P, Si T, Zhai Z G 2016 J. Fluid Mech. 802 186

    [16]

    Rikanati A, Alon U, Shvarts D 2003 Phys. Fluids 15 3776

    [17]

    Miura A 1997 Phys. Plasmas 4 2871

    [18]

    Dimotakis P E 2000 J. Fluid Mech. 409 69

    [19]

    Zhou Y, Remington B A, Robey H F, Cook A W, Glendinning S G, Dimits A, Cabot W 2003 Phys. Plasmas 10 1883

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性.  , 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 高鹏骋, 田徐顺, 黄桥高, 潘光, 褚勇. 蝠鲼交错排布集群游动水动力性能.  , 2024, 73(13): 134702. doi: 10.7498/aps.73.20240399
    [3] 孙贝贝, 叶文华, 张维岩. 密度扰动的类Richtmyer-Meshkov不稳定性增长及其与无扰动界面耦合的数值模拟.  , 2023, 72(19): 194701. doi: 10.7498/aps.72.20230928
    [4] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响.  , 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [5] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理.  , 2022, 71(21): 214703. doi: 10.7498/aps.71.20221012
    [6] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟.  , 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [7] 袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇. 冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究.  , 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [8] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理.  , 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [9] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性.  , 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [10] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎. 不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解.  , 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [11] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究.  , 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [12] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究.  , 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [13] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性.  , 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [14] 李俊涛, 孙宇涛, 胡晓棉, 任玉新. 激波冲击V形界面重气体导致的壁面与旋涡作用及其对湍流混合的影响.  , 2017, 66(23): 235201. doi: 10.7498/aps.66.235201
    [15] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究.  , 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [16] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟.  , 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [17] 夏同军, 董永强, 曹义刚. 界面张力对Rayleigh-Taylor不稳定性的影响.  , 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [18] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究.  , 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [19] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究.  , 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [20] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究.  , 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
计量
  • 文章访问数:  5944
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-19
  • 修回日期:  2016-08-19
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map