搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HADAR实验对活动星系核伽马射线辐射观测的预期研究

钱祥利 孙惠英 陈天禄 单增罗布 冯有亮 高启 苟全补 郭义庆 胡红波 康明铭 厉海金 刘成 刘茂元 刘伟 乔冰强 王旭 王振 辛广广 姚玉华 袁强 张毅

引用本文:
Citation:

HADAR实验对活动星系核伽马射线辐射观测的预期研究

钱祥利, 孙惠英, 陈天禄, 单增罗布, 冯有亮, 高启, 苟全补, 郭义庆, 胡红波, 康明铭, 厉海金, 刘成, 刘茂元, 刘伟, 乔冰强, 王旭, 王振, 辛广广, 姚玉华, 袁强, 张毅

Prospective study on observations of gamma-ray emission from active galactic nuclei using the HADAR experiment

Qian Xiang-Li, Sun Hui-Ying, Chen Tian-Lu, Danzengluobu, Feng You-Liang, Gao Qi, Gou Quan-Bu, Guo Yi-Qing, Hu Hong-Bo, Kang Ming-Ming, Li Hai-Jin, Liu Cheng, Liu Mao-Yuan, Liu Wei, Qiao Bing-Qiang, Wang Xu, Wang Zhen, Xin Guang-Guang, Yao Yu-Hua, Yuan Qiang, Zhang Yi
PDF
HTML
导出引用
  • HADAR (High Altitude Detection of Astronomical Radiation)是一个基于大气切伦科夫成像技术的地面望远镜阵列, 其采用大口径折射式水透镜系统来收集大气切伦科夫光, 以实现对10 GeV—10 TeV能量段的伽马射线和宇宙线的探测. HADAR具有低阈能和大视场的优势, 因此可以对天区进行连续扫描和观测, 在观测活动星系核(Active Galactic Nuclei, AGN)等银河系外伽马射线源方面具有明显优势. 本文研究了HADAR实验对AGN的探测能力. 基于费米望远镜(Fermi Large Area Telescope, Fermi-LAT)的AGN源能谱信息, 将观测能量外推至甚高能能段, 同时加入河外背景光的吸收效应, 以计算HADAR对AGN源观测的统计显著性. 研究结果显示, HADAR运行一年时间, 预计将有31个Fermi-LAT AGN源以高于5倍显著性被观测到, 其中大部分为蝎虎状天体类型.
    The High Altitude Detection of Astronomical Radiation (HADAR) experiment is a refracting terrestrial telescope array based on the atmospheric Cherenkov imaging technique. It is a hybrid array consisting of four water-lens telescopes and a surrounding scintillation detector array for observing Cherenkov light induced by 10 GeV–10 TeV cosmic rays and gamma rays in the atmosphere. The water-lens telescope mainly consists of a hemispherical lens with a diameter of 5 m acting as a Cherenkov light collector, a cylindrical metal tank with a 4 m radius and 7 m height, and an imaging system at the bottom of the tank. The sky region covered by HADAR is much larger than the current generation of Imaging Atmospheric Cherenkov Telescopes, and even the CTA. The field-of-view (FOV) of HADAR can reach up to 60 degrees. The HADAR experiment possesses the advantages of a large field-of-view and low energy threshold, so it can continuously scan wide portions of the sky and easily observe extragalactic gamma-ray sources. The majority of the extragalactic gamma-ray sources detected at very high energy (VHE) energies are active galactic nuclei (AGNs). In this study, we present the potential of using the HADAR experiment for detecting AGN. Based on the AGN catalog sources of the Fermi Large Area Telescope (Fermi-LAT), the observed energy is extrapolated to the VHE range. The VHE gamma rays propagating over cosmological distances can interact with the low-energy of the extragalactic background light (EBL) and produce electron-positron pairs. Therefore, we consider the absorption effects of different EBL models when calculating the expected gamma ray spectra of the AGN sample. We select the sample with redshift measurements and locations inside the FOV of HADAR from 4LAC catalog. In total, there are 375 BL Lacertae objects (BL Lacs) and 289 flat-spectrum radio quasars (FSRQs) satisfying the selection conditions. The integral gamma ray spectra are derived and compared with the sensitivity curve of HADAR, the number of sources with fluxes above the sensitivity of HADAR is counted. Further, we calculate the statistical significance of HADAR for AGN source observation based on the equi-zenith angle sky scanning analysis method. The simulation results reveal that a total of 31 sources of Fermi-LAT AGN can be detected by HADAR with a significance greater than five standard deviations over a one-year survey period, most of which are BL Lacs.
      通信作者: 陈天禄, chentl@ihep.ac.cn ; 郭义庆, guoyq@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12263005, 11873005, 11705103, 12005120, 12147218, U1831208, U1632104, 11875264, U2031110)和西藏大学宇宙线教育部重点实验室开放基金(批准号: KLCR-202201)资助的课题
      Corresponding author: Chen Tian-Lu, chentl@ihep.ac.cn ; Guo Yi-Qing, guoyq@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12263005, 11873005, 11705103, 12005120, 12147218, U1831208, U1632104, 11875264, U2031110) and the Key Laboratory for Cosmic Ray of the Education Ministry of China, Tibet University (Grant No. KLCR-202201)
    [1]

    Aharonian F, Akhperjanian A G, Bazer-Bachi A R 2007 Astrophys. J. 664 L71Google Scholar

    [2]

    Albert J, Aliu E, Anderhub H 2007 Astrophys. J. 669 862Google Scholar

    [3]

    Sikora M, Begelman M C, Rees M J 1994 Astrophys. J. 421 153Google Scholar

    [4]

    Marscher A P 2016 Galaxies. 4 37Google Scholar

    [5]

    Aharonian F 2000 New. Astron. 5 377Google Scholar

    [6]

    Mücke A, Protheroe R J, Engel R, Rachen J P, Stanev T 2003 Astropart. Phys. 18 593Google Scholar

    [7]

    Fossati G, Maraschi L, Celotti A, Comastri A, Ghisellini G 1998 Mon. Not. R. Astron. Soc. 299 433Google Scholar

    [8]

    Ghisellini G, Righi C, Costamante L, Tavecchio F 2017 Mon. Not. R. Astron. Soc. 469 255Google Scholar

    [9]

    Padovani P, Giommi P 1995 Mon. Not. R. Astron. Soc. 277 1477Google Scholar

    [10]

    Ajello M, Arimoto M, Axelsson M 2019 Astrophys. J. 878 52Google Scholar

    [11]

    Hinton J A 2004 New. Astron. Rev. 48 331Google Scholar

    [12]

    Aleksić J, Ansoldi S, Antonelli L A 2016 Astropart. Phys. 72 61Google Scholar

    [13]

    Weekes T C, Badran H, Biller S D 2002 Astropart. Phys. 17 221Google Scholar

    [14]

    Abeysekara A U, Alfaro R, Alvarez C 2013 Astropart. Phys. 50 26Google Scholar

    [15]

    Sciascio G D 2016 Nucl. Part. Phys. P. 279 166Google Scholar

    [16]

    CTA Consortium 2018 Science with the Cherenkov Telescope Array (Singapore: World Scientific) pp11–26

    [17]

    Punch M, Akerlof C W, Cawley M F 1992 Nature 358 477Google Scholar

    [18]

    Quinn J, Akerlof C W, Biller S 1996 Astrophys. J. 456 L83Google Scholar

    [19]

    Albert J, Aliu E, Anderhub H 2008 Science 320 1752Google Scholar

    [20]

    Aliu E, Archambault S, Arlen T 2012 Astrophys. J. 750 94Google Scholar

    [21]

    Abramowski A, Acero F, Aharonian F 2012 Astron. Astrophys. 538 A103Google Scholar

    [22]

    Abramowski A, Acero F, Aharonian F 2013 Mon. Not. R. Astron. Soc. 434 1889Google Scholar

    [23]

    Abdo A A, Ackermann M, Ajello M 2011 Astrophys. J. 736 131Google Scholar

    [24]

    Ahnen M L, Ansoldi S, Antonelli L A 2017 Astron. Astrophys. 603 A31Google Scholar

    [25]

    Abdalla H, Adam R, Aharonian F 2021 Astron. Astrophys. 648 A23Google Scholar

    [26]

    Arlen T, Aune T, Beilicke M 2012 Astrophys. J. 762 92Google Scholar

    [27]

    Abdo A A, Ackermann M, Ajello M 2011 Astrophys. J. 727 129Google Scholar

    [28]

    Bartoli B, Bernardini P, Bi X J 2012 Astrophys. J. 758 2Google Scholar

    [29]

    Albert J, Aliu E, Anderhub H 2007 Astrophys. J. 667 358Google Scholar

    [30]

    Gilmore R C, Madau P, Primack J R, Somerville R S, Haardt F 2009 Mon. Not. R. Astron. Soc. 399 1694Google Scholar

    [31]

    Inoue S, Salvaterra R, Choudhury T R, Ferrara A, Ciardi B, Schneider R 2010 Mon. Not. R. Astron. Soc. 404 1938Google Scholar

    [32]

    Takahashi K, Inoue S, Ichiki K, Nakamura T 2011 Mon. Not. R. Astron. Soc. 410 2741Google Scholar

    [33]

    Wang Z, Guo Y Q, Cai H 2018 Exp. Astron. 45 363Google Scholar

    [34]

    Xin G G, Yao Y H, Qian X L 2021 Astrophys. J. 923 112Google Scholar

    [35]

    Holler M, Balzer A, Chalmé-Calvet R, de Naurois M, and Zaborov D 2015 Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July–6 August 2015 34 980

    [36]

    Aleksić J, Ansoldi S, Antonelli L A 2016 Astropart. Phys. 72 76Google Scholar

    [37]

    Ma X H, Bi Y J, Cao Z 2022 Chinese Phys. C 46 030001Google Scholar

    [38]

    DeYoung T 2012 Nucl. Instrum. Meth. A 692 72Google Scholar

    [39]

    Zhao Y, Yuan Q, Bi X J, Zhu F R, Jia H Y 2016 Int. J. Mod. Phys. D 25 1650006Google Scholar

    [40]

    Cai H, Zhang Y, Liu C 2017 J. Instrum. 12 09023Google Scholar

    [41]

    Chen T L, Liu C, Gao Q 2019 Nucl. Instrum. Meth. A 927 46Google Scholar

    [42]

    Ajello M, Angioni R, Axelsson M 2020 Astrophys. J. 892 105Google Scholar

    [43]

    Stecker F W, De Jager O C, Salamon M H 1992 Astrophys. J. 390 L49Google Scholar

    [44]

    Franceschini A, Rodighiero G, Vaccari M 2008 Astron. Astrophys. 487 837Google Scholar

    [45]

    Finke J D, Razzaque S, Dermer C D 2010 Astrophys. J. 712 238Google Scholar

    [46]

    Domínguez A, Primack J R, Rosario D J 2011 Mon. Not. R. Astron. Soc. 410 2556Google Scholar

    [47]

    Gilmore R C, Somerville R S, Primack J R, Domínguez A 2012 Mon. Not. R. Astron. Soc. 422 3189Google Scholar

    [48]

    Helgason K, Kashlinsky A 2012 Astrophys. J. Lett. 758 L13Google Scholar

    [49]

    Inoue Y, Inoue S, Kobayashi M A R, Makiya R, Niino Y, Totani T 2013 Astrophys. J. 768 197Google Scholar

    [50]

    Stecker F W, Scully S T, Malkan M A 2016 Astrophys. J. 827 6Google Scholar

    [51]

    Abdollahi S, Acero F, Ackermann M 2020 Astrophys. J. Suppl. S. 247 33Google Scholar

    [52]

    Amenomori M, Ayabe S, Chen D 2005 Astrophys. J. 633 1005Google Scholar

    [53]

    Gaisser T K, Stanev T, Tilav S 2013 Front. Phys. 8 748Google Scholar

  • 图 1  HADAR阵列示意图 (a)阵列分布图; (b)单个水透镜详细结构图[34]

    Fig. 1.  Schematic of HADAR: (a) Layout of the HADAR experiment; (b) detailed design of a water-lens telescope[34]

    图 2  HADAR实验的角分辨, 入射事例的天顶角分别为10°, 20°和30°[34]

    Fig. 2.  Performance of HADAR angular resolution. The incident zenith angles are 10°, 20° and 30°[34]

    图 3  HADAR实验的有效面积 (a)不同天顶角伽马事例入射时的有效面积及与其他实验的比较; (b)实验的有效孔径

    Fig. 3.  Performance of HADAR effective area: (a) Effective areas for incident γ-ray events at different zenith angles and comparison with other IACT and EAS experiments; (b) acceptance for HADAR and other experiments

    图 4  HADAR及其他伽马射线实验的灵敏度曲线对比图

    Fig. 4.  Comparisons of the sensitivity of HADAR with other γ-ray instruments

    图 5  筛选出的664个AGN源的能谱指数分布图(左)与红移分布图(右)

    Fig. 5.  Distribution of photon index (left) and redshift (right) for 664 selected AGN sources

    图 6  预期的经过5种不同EBL模型吸收之后的AGN源的伽马射线能谱图及与HADAR灵敏度曲线的比较. 其中蓝色实线为BL Lacs, 红色虚线为FSRQs, 黑色粗线为HADAR的灵敏度曲线

    Fig. 6.  Expected γ-ray spectra of the AGN sample after EBL absorption. Different panels are for the five different EBL models as labeled. The blue solid lines represent BL Lacs and red dashed lines represent FSRQs. The sensitivity of HADAR is shown with the thick black line

    图 7  赤道坐标系(J2000 坐标)下HADAR对河外源的观测显著性预期, 显著性显示范围为–3—15

    Fig. 7.  Expected significance of extragalactic sources in the equatorial coordinates (J2000 epoch) in the HADAR FOV. The visualization range is limited between –3 and 15

    表 1  HADAR实验一年观测时间对河外源观测的显著性估计, 列表从左到右依次为: Fermi源名称, 相关联的源, 赤经, 赤纬, 红移, 归一化的流强, $ E_0 $, 谱指数α, 谱指数β, 一年内的有效观测时间, 预期显著性

    Table 1.  Expected significance of extragalactic sources with HADAR between 30 GeV and 10 TeV using a 1 yr observation time. Columns from left to right are as follows: Fermi source name, associations, R.A., Dec., redshift, normalization flux, $ E_0 $, spectral index α, spectral index β, effective livetime, expected significance by HADAR

    Fermi Source Assoc. R.A./(°) Dec./(°) z $N_0/(\rm TeV^{-1}{\cdot}cm^{-2}{\cdot}s^{-1})$ $ E_0 $/GeV α β Livetime/hrs S/σ
    4FGL J0112.1+2245 S2 0109+22 18.03 22.75 0.265 1.399× 10–5 0.76 1.99 0.057 277.8 8.9
    4FGL J0222.6+4302 3C66A 35.67 43.04 0.444 1.008×10–5 1.21 1.88 0.045 264.2 21.5
    4FGL J0319.8+1845 1E 0317.0+1835 49.97 18.75 0.190 1.618×10–8 5.98 1.67 0.0 257.8 5.1
    4FGL J0650.7+2503 1ES 0647+250 102.70 25.05 0.203 6.587×10–7 2.06 1.66 0.035 286.0 25.3
    4FGL J0738.1+1742 PKS 0735+17 114.54 17.71 0.424 2.640×10–6 1.54 1.97 0.065 251.3 7.4
    4FGL J0809.8+5218 1ES 0806+524 122.46 52.31 0.138 2.222×10–6 1.30 1.80 0.041 193.9 15.1
    4FGL J0915.9+2933 Ton 0396 138.99 29.55 0.190 1.068×10–6 1.35 1.74 0.083 294.7 7.8
    4FGL J1015.0+4926 1H 1013+498 153.77 49.43 0.212 7.019×10–6 1.01 1.76 0.041 220.0 29.9
    4FGL J1058.6+5627 TXS 1055+567 164.67 56.46 0.143 2.525×10–6 1.06 1.87 0.040 149.4 6.3
    4FGL J1104.4+3812 Mkn 421 166.12 38.21 0.030 1.842×10–5 1.29 1.72 0.023 284.9 529.6
    4FGL J1117.0+2013 RBS 0958 169.27 20.23 0.139 4.167×10–7 1.84 1.95 0.0 266.1 5.7
    4FGL J1150.6+4154 RBS 1040 177.66 41.91 0.320 5.965×10–7 1.73 1.65 0.091 270.0 6.6
    4FGL J1217.9+3007 B2 1215+30 184.48 30.12 0.130 7.113×10–6 1.07 1.88 0.040 295.1 31.6
    4FGL J1221.3+3010 PG 1218+304 185.34 30.17 0.184 1.742×10–7 4.44 1.71 0.0 295.2 31.3
    4FGL J1221.5+2814 W Comae 185.38 28.24 0.102 3.516×10–6 1.06 2.16 0.0 293.1 6.6
    4FGL J1224.4+2436 MS 1221.8+2452 186.12 24.61 0.219 2.417×10–7 2.36 1.89 0.0 284.6 5.5
    4FGL J1224.9+2122 4C +21.35 186.23 21.38 0.434 2.187×10–4 0.39 2.27 0.045 271.8 5.4
    4FGL J1230.2+2517 ON 246 187.56 25.30 0.135 6.100×10–6 0.82 1.99 0.061 286.7 6.0
    4FGL J1231.7+2847 B2 1229+29 187.93 28.79 0.236 7.991×10–7 1.58 1.99 0.0 293.9 5.1
    4FGL J1427.0+2348 PKS 1424+240 216.76 23.80 0.604 6.508×10–6 1.23 1.70 0.060 281.8 23.8
    4FGL J1428.5+4240 H 1426+428 217.13 42.68 0.129 2.772×10–8 5.02 1.66 0.0 266.1 9.7
    4FGL J1555.7+1111 PG 1553+113 238.93 11.19 0.360 3.325×10–6 1.85 1.54 0.070 199.5 58.9
    4FGL J1653.8+3945 Mkn 501 253.47 39.76 0.033 4.439×10–6 1.48 1.71 0.018 279.5 258.4
    4FGL J1725.0+1152 1H 1720+117 261.27 11.87 0.180 7.214×10–7 2.22 1.76 0.056 205.9 13.9
    4FGL J1728.3+5013 I Zw 187 262.08 50.23 0.055 1.950×10–7 3.01 1.78 0.0 213.2 24.1
    4FGL J1838.8+4802 GB6J1838+4802 279.71 48.04 0.300 3.198×10–7 2.55 1.85 0.0 231.3 6.1
    4FGL J2116.2+3339 B2 2114+33 319.06 33.66 0.350 1.068×10–6 1.71 1.74 0.102 294.4 7.2
    4FGL J2202.7+4216 BL Lac 330.69 42.28 0.069 4.498×10–5 0.75 2.18 0.060 268.2 15.0
    4FGL J2250.0+3825 B3 2247+381 342.51 38.42 0.119 2.881×10–8 5.33 1.72 0.060 284.2 9.9
    4FGL J2253.9+1609 3C 454.3 343.50 16.15 0.859 6.408×10–4 0.52 2.39 0.0 240.7 14.7
    4FGL J2323.8+4210 1ES 2321+419 350.97 42.18 0.059 2.926×10–7 2.47 1.90 0.0 268.7 13.4
    下载: 导出CSV
    Baidu
  • [1]

    Aharonian F, Akhperjanian A G, Bazer-Bachi A R 2007 Astrophys. J. 664 L71Google Scholar

    [2]

    Albert J, Aliu E, Anderhub H 2007 Astrophys. J. 669 862Google Scholar

    [3]

    Sikora M, Begelman M C, Rees M J 1994 Astrophys. J. 421 153Google Scholar

    [4]

    Marscher A P 2016 Galaxies. 4 37Google Scholar

    [5]

    Aharonian F 2000 New. Astron. 5 377Google Scholar

    [6]

    Mücke A, Protheroe R J, Engel R, Rachen J P, Stanev T 2003 Astropart. Phys. 18 593Google Scholar

    [7]

    Fossati G, Maraschi L, Celotti A, Comastri A, Ghisellini G 1998 Mon. Not. R. Astron. Soc. 299 433Google Scholar

    [8]

    Ghisellini G, Righi C, Costamante L, Tavecchio F 2017 Mon. Not. R. Astron. Soc. 469 255Google Scholar

    [9]

    Padovani P, Giommi P 1995 Mon. Not. R. Astron. Soc. 277 1477Google Scholar

    [10]

    Ajello M, Arimoto M, Axelsson M 2019 Astrophys. J. 878 52Google Scholar

    [11]

    Hinton J A 2004 New. Astron. Rev. 48 331Google Scholar

    [12]

    Aleksić J, Ansoldi S, Antonelli L A 2016 Astropart. Phys. 72 61Google Scholar

    [13]

    Weekes T C, Badran H, Biller S D 2002 Astropart. Phys. 17 221Google Scholar

    [14]

    Abeysekara A U, Alfaro R, Alvarez C 2013 Astropart. Phys. 50 26Google Scholar

    [15]

    Sciascio G D 2016 Nucl. Part. Phys. P. 279 166Google Scholar

    [16]

    CTA Consortium 2018 Science with the Cherenkov Telescope Array (Singapore: World Scientific) pp11–26

    [17]

    Punch M, Akerlof C W, Cawley M F 1992 Nature 358 477Google Scholar

    [18]

    Quinn J, Akerlof C W, Biller S 1996 Astrophys. J. 456 L83Google Scholar

    [19]

    Albert J, Aliu E, Anderhub H 2008 Science 320 1752Google Scholar

    [20]

    Aliu E, Archambault S, Arlen T 2012 Astrophys. J. 750 94Google Scholar

    [21]

    Abramowski A, Acero F, Aharonian F 2012 Astron. Astrophys. 538 A103Google Scholar

    [22]

    Abramowski A, Acero F, Aharonian F 2013 Mon. Not. R. Astron. Soc. 434 1889Google Scholar

    [23]

    Abdo A A, Ackermann M, Ajello M 2011 Astrophys. J. 736 131Google Scholar

    [24]

    Ahnen M L, Ansoldi S, Antonelli L A 2017 Astron. Astrophys. 603 A31Google Scholar

    [25]

    Abdalla H, Adam R, Aharonian F 2021 Astron. Astrophys. 648 A23Google Scholar

    [26]

    Arlen T, Aune T, Beilicke M 2012 Astrophys. J. 762 92Google Scholar

    [27]

    Abdo A A, Ackermann M, Ajello M 2011 Astrophys. J. 727 129Google Scholar

    [28]

    Bartoli B, Bernardini P, Bi X J 2012 Astrophys. J. 758 2Google Scholar

    [29]

    Albert J, Aliu E, Anderhub H 2007 Astrophys. J. 667 358Google Scholar

    [30]

    Gilmore R C, Madau P, Primack J R, Somerville R S, Haardt F 2009 Mon. Not. R. Astron. Soc. 399 1694Google Scholar

    [31]

    Inoue S, Salvaterra R, Choudhury T R, Ferrara A, Ciardi B, Schneider R 2010 Mon. Not. R. Astron. Soc. 404 1938Google Scholar

    [32]

    Takahashi K, Inoue S, Ichiki K, Nakamura T 2011 Mon. Not. R. Astron. Soc. 410 2741Google Scholar

    [33]

    Wang Z, Guo Y Q, Cai H 2018 Exp. Astron. 45 363Google Scholar

    [34]

    Xin G G, Yao Y H, Qian X L 2021 Astrophys. J. 923 112Google Scholar

    [35]

    Holler M, Balzer A, Chalmé-Calvet R, de Naurois M, and Zaborov D 2015 Proceedings of the 34th International Cosmic Ray Conference, Hague, Netherlands, 30 July–6 August 2015 34 980

    [36]

    Aleksić J, Ansoldi S, Antonelli L A 2016 Astropart. Phys. 72 76Google Scholar

    [37]

    Ma X H, Bi Y J, Cao Z 2022 Chinese Phys. C 46 030001Google Scholar

    [38]

    DeYoung T 2012 Nucl. Instrum. Meth. A 692 72Google Scholar

    [39]

    Zhao Y, Yuan Q, Bi X J, Zhu F R, Jia H Y 2016 Int. J. Mod. Phys. D 25 1650006Google Scholar

    [40]

    Cai H, Zhang Y, Liu C 2017 J. Instrum. 12 09023Google Scholar

    [41]

    Chen T L, Liu C, Gao Q 2019 Nucl. Instrum. Meth. A 927 46Google Scholar

    [42]

    Ajello M, Angioni R, Axelsson M 2020 Astrophys. J. 892 105Google Scholar

    [43]

    Stecker F W, De Jager O C, Salamon M H 1992 Astrophys. J. 390 L49Google Scholar

    [44]

    Franceschini A, Rodighiero G, Vaccari M 2008 Astron. Astrophys. 487 837Google Scholar

    [45]

    Finke J D, Razzaque S, Dermer C D 2010 Astrophys. J. 712 238Google Scholar

    [46]

    Domínguez A, Primack J R, Rosario D J 2011 Mon. Not. R. Astron. Soc. 410 2556Google Scholar

    [47]

    Gilmore R C, Somerville R S, Primack J R, Domínguez A 2012 Mon. Not. R. Astron. Soc. 422 3189Google Scholar

    [48]

    Helgason K, Kashlinsky A 2012 Astrophys. J. Lett. 758 L13Google Scholar

    [49]

    Inoue Y, Inoue S, Kobayashi M A R, Makiya R, Niino Y, Totani T 2013 Astrophys. J. 768 197Google Scholar

    [50]

    Stecker F W, Scully S T, Malkan M A 2016 Astrophys. J. 827 6Google Scholar

    [51]

    Abdollahi S, Acero F, Ackermann M 2020 Astrophys. J. Suppl. S. 247 33Google Scholar

    [52]

    Amenomori M, Ayabe S, Chen D 2005 Astrophys. J. 633 1005Google Scholar

    [53]

    Gaisser T K, Stanev T, Tilav S 2013 Front. Phys. 8 748Google Scholar

  • [1] 孙惠英, 钱祥利, 陈天禄, 单增罗布, 冯有亮, 高启, 苟全补, 郭义庆, 胡红波, 康明铭, 厉海金, 刘成, 刘茂元, 刘伟, 乔冰强, 王旭, 王振, 辛广广, 姚玉华, 袁强, 张毅. HADAR实验对Fermi-LAT伽马射线源观测的预期研究.  , 2023, 72(19): 199501. doi: 10.7498/aps.72.20230977
    [2] 黎丽, 赵志国, 古华光. 兴奋性和抑制性自反馈压制靠近Hopf分岔的神经电活动比较.  , 2022, 71(5): 050504. doi: 10.7498/aps.71.20211829
    [3] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动.  , 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [4] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较.  , 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [5] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇. 硬X射线调制望远镜低能探测器量子效率标定.  , 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [6] 方志明, 崔荣一, 金璟璇. 基于生物视觉特征和视觉心理学的视频显著性检测算法.  , 2017, 66(10): 109501. doi: 10.7498/aps.66.109501
    [7] 颜召军, 陈欣扬, 郑立新, 丁媛媛, 朱能鸿. 基于色散干涉图像的拼接望远镜共相零位标定方法研究.  , 2016, 65(19): 199501. doi: 10.7498/aps.65.199501
    [8] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析.  , 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [9] 颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿. 基于光栅色散干涉条纹的菲佐光干涉望远镜共相检测方法研究.  , 2015, 64(14): 149501. doi: 10.7498/aps.64.149501
    [10] 廖宏宇, 马晓燠, 郭友明, 饶长辉, 魏凯. 基于AR模型搜索迭代算法的望远镜跟踪误差分析.  , 2014, 63(17): 179501. doi: 10.7498/aps.63.179501
    [11] 金左轮, 韩静, 张毅, 柏连发. 基于纹理显著性的微光图像目标检测.  , 2014, 63(6): 069501. doi: 10.7498/aps.63.069501
    [12] 王萍, 潘跃. 基于显著性特征的大冰雹识别模型.  , 2013, 62(6): 069202. doi: 10.7498/aps.62.069202
    [13] 董富通, 王菲鹿, 仲佳勇, 赵刚. Fe离子M壳层不可分辨跃迁系不透明度研究.  , 2012, 61(16): 163201. doi: 10.7498/aps.61.163201
    [14] 赵保银, 吕百达. 使用离焦望远镜系统合成轴上平顶光束的一种新方法.  , 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [15] 王 斌, 唐昌建, 刘濮鲲. 离子通道中相对论电子注的切连科夫辐射.  , 2006, 55(11): 5953-5958. doi: 10.7498/aps.55.5953
    [16] 韩英魁, 王清月, 张志刚, 张伟力, 柴 路, 袁晓东, 黄小军. 飞秒啁啾脉冲放大系统中折叠反射式望远镜对脉冲波前的影响.  , 2005, 54(4): 1613-1618. doi: 10.7498/aps.54.1613
    [17] 徐光, 钱列加, 王韬, 朱鹤元, 范滇元. 用于超短脉冲扩展的时间望远镜.  , 2004, 53(1): 93-98. doi: 10.7498/aps.53.93
    [18] 吴坚强, 刘盛纲, 莫元龙. 未磁化等离子体介质切连科夫脉塞的线性理论.  , 1997, 46(2): 324-331. doi: 10.7498/aps.46.324
    [19] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系.  , 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
    [20] 《解放军报》. 毛泽东思想是我们革命事业的望远镜和显微镜.  , 1966, 22(8): 855-858. doi: 10.7498/aps.22.855
计量
  • 文章访问数:  5257
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 修回日期:  2022-11-09
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-20

/

返回文章
返回
Baidu
map