搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含边界裂缝金刚石烯抗拉特性和破坏机理

张自旭 王磊

引用本文:
Citation:

含边界裂缝金刚石烯抗拉特性和破坏机理

张自旭, 王磊

Tensile properties and damage mechanism of diamondene with boundary cracks

Zhang Zi-Xu, Wang Lei
PDF
HTML
导出引用
  • 金刚石烯因其优异的物理性质, 近些年来备受科学家们关注. 然而由于目前技术的限制, 金刚石烯在制备过程中难免出现缺陷. 本文采用分子动力学方法, 研究了边界裂缝对金刚石烯抗拉特性和破坏机理的影响. 结果表明, 裂缝的存在导致金刚石烯的抗拉性能大幅度削弱, 含边界裂缝金刚石烯的弹性模量、起裂应变和起裂应力均小于无裂缝金刚石烯. 破坏模式方面, 无裂缝金刚石烯的破坏从移动端附近开始, 含边界裂缝金刚石烯的破坏从裂缝尖端开始. 无裂缝金刚石烯在达到起裂应变后, 无需继续增大荷载即形成贯穿裂缝, 完全失去承载能力; 含边界裂缝金刚石烯在达到起裂应变后, 仍需继续施加荷载, 裂缝经过多次延伸后, 形成贯穿裂缝, 导致其完全失去承载能力. 裂缝位置、长度和方向的改变也会使含裂缝金刚石烯的抗拉特性和破坏机理发生变化. 另外, 含边界裂缝金刚石烯的抗拉特性对温度有着明显的依赖性, 当温度升高时, 含边界裂缝金刚石烯的抗拉特性显著下降.
    Diamondene has received the attention of scientists recently because of its brilliant physical properties. But, owing to the limitations of current technology, defects are indispensable during the production of diamondene. In this work, the effect of boundary cracks on the tensile properties and damage mechanism of diamondene are investigated by using molecular dynamics method. The results show that the crack leads the tensile properties of diamondene to be weakened, and the elastic modulus, cracking strain, and cracking stress of diamondene containing a boundary crack to become less than those of diamondene without cracks. As for the failure mode, the damage of crack-free diamondene starts near the mobile end, while the damage of diamondene with a boundary crack starts at the crack tip. After the cracking strain has been reached, the crack will form a penetration rupture without further loading and the crack-free diamondene completely loses its load-bearing capacity. However, in diamondene with a boundary crack, the load still needs adding, and the crack will form a penetration crack after the cracking strain has been reached through several extensions. Furthermore, the tensile properties of diamondene with a boundary crackare strongly dependent on temperature, and decrease significantly when the temperature increases. Changes in the location, length and direction of cracks can cause the tensile properties and damage mechanism of the crack-containing diamondene to change.
      通信作者: 王磊, wangL@hhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12072105, 11932006)和中央高校基本科研业务费(批准号: B200202115)资助的课题.
      Corresponding author: Wang Lei, wangL@hhu.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 12072105, 11932006) and the Fundamental Research Funds for the Central Universities of China (Grant No. B200202115).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Miao T, Yeom S, Wang P, Standley B, Bockrath M 2014 Nano Lett. 14 2982Google Scholar

    [3]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701Google Scholar

    [4]

    Xu L Q, Wei N, Zheng Y P 2012 J. Mater. Chem. 22 1435Google Scholar

    [5]

    Jiang J W, Leng J T, Li J X, Guo Z R, Chang T C, Guo X M, Zhang T Y 2017 Carbon 118 370Google Scholar

    [6]

    Cai K, Luo J, Ling Y R, Wan J, Qin Q H 2016 Sci. Rep. 6 35157Google Scholar

    [7]

    吴玉程 2019 材料热处理学报 5 16

    Wu Y C 2019 Trans. Mater. Heat Treat 5 16

    [8]

    Barboza A P M, Guimaraes M H D, Massote D V P, Campos L C, Barbosa N N M, Cancado L G, Lacerda R G, Chacham H, Mazzoni M S C, Neves B R A 2011 Adv. Mater. 23 3014Google Scholar

    [9]

    Pakornchote T, Ektarawong A, Alling B, Pinsook U, Tancharakorn S, Busayaporn W, Bovornratanaraks T 2019 Carbon 146 468Google Scholar

    [10]

    Shi J, Cai K, Xie Y M 2018 Mater. Des. 156 125Google Scholar

    [11]

    Cai K, Wang L, Xie Y M 2018 Mater. Des. 149 34Google Scholar

    [12]

    Wang L, Cai K, Wei S Y, Xie Y M 2018 Phys. Chem. Chem. Phys. 20 21136Google Scholar

    [13]

    Wang L, Cai K, Xie Y M, Qin Q H 2019 Nanotechnology 30 075702Google Scholar

    [14]

    Wang L, Li D H, Shi J, Cai K 2020 Comput. Mater. Sci. 173 109459Google Scholar

    [15]

    Martins L G P, Matos M J S, Paschoal A R, Freire P T C, Andrade N F, A A L, Kong J, Neves B R A, de Oliveira A B, Mazzoni M S C, Filho A G S, Cançado L G 2017 Nat. Commun. 8 96Google Scholar

    [16]

    Gao Y, Cao T F, Cellini F, Berger C, de Heer W A, Tosatti E, Riedo E, Bongiorno A 2018 Nat. Nanotechnol. 13 133Google Scholar

    [17]

    辛浩, 韩强, 姚小虎 2008 57 4391Google Scholar

    Xin H, Han Q, Yao X H 2008 Acta Phys. Sin. 57 4391Google Scholar

    [18]

    Wang M C, Yan C, Ma L, Hu N, Chen M W 2012 Comput. Mater. Sci. 54 236Google Scholar

    [19]

    Wang C H, Han Q, Xin D R 2015 Mol. Simul. 41 1Google Scholar

    [20]

    Fu Y, Ragab T, Basaran C T 2016 Comput. Mater. Sci. 124 142Google Scholar

    [21]

    An M R, Deng Q, Li Y L, Song H Y, Su M J 2018 Superlattices Microst. 123 172Google Scholar

    [22]

    王磊, 张冉冉, 方炜 2019 68 064210Google Scholar

    Wang L, Zhang R R, Fang W 2019 Acta Phys. Sin. 68 064210Google Scholar

    [23]

    Li Y B, Sinitskii A, Tour J M 2008 Nat. Mater. 7 966Google Scholar

    [24]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

  • 图 1  金刚石烯模型构型图 (a) 金刚石烯模型的左视图、俯视图和正视图; (b) 金刚石烯胞元的构型图

    Fig. 1.  Conformation diagram of diamondene model: (a) Three views of diamondene model; (b) conformation diagram of the diamondene unit cell.

    图 2  三种模型在10 K温度下的单轴拉伸曲线图 (a) 无裂缝金刚石烯, (b) 含边界裂缝金刚石烯和(c)双层石墨烯的拉伸过程应力-应变和VPEA-应变曲线; (d) 三者的起裂应变与起裂应力对比

    Fig. 2.  Plots of the three models during stretching at 10 K: Stress-strain and VPEA-strain curves during stretching of pristine diamondene (a), diamondene with a boundary crack (b) and bilayer graphene with a boundary crack (c); (d) cracking strain versus cracking stress for the three.

    图 3  无裂缝金刚石烯单轴拉伸过程构型图

    Fig. 3.  Uniaxial stretching process configuration of pristine diamondene.

    图 4  无裂缝金刚石烯拉伸过程中L12, L23α123值的变化

    Fig. 4.  Variation of L12, L23 and α123 values during stretching of pristine diamondene.

    图 5  含边界裂缝金刚石烯单轴拉伸过程构型图

    Fig. 5.  Uniaxial stretching process configuration of diamondene with a boundary crack.

    图 6  含边界裂缝双层石墨烯单轴拉伸过程构型图

    Fig. 6.  Uniaxial stretching process conformation of bilayer graphene with a boundary crack.

    图 7  含边界裂缝金刚石烯(a)和双层石墨烯(b)的构型图对比

    Fig. 7.  Comparison of conformation diagram of diamondene containing a boundary crack (a) and bilayer graphene containing a boundary crack (b).

    图 8  不同温度下以0.001 nm位移增量进行含边界裂缝金刚石烯的单轴拉伸过程曲线图 (a) 应力-应变曲线; (b) 势能随弛豫时间变化曲线; (c) 起裂应变随温度变化曲线; (d) 起裂应力随温度变化曲线

    Fig. 8.  Plots of uniaxial stretching processes with a boundary crack in diamondene at different temperatures in 0.001 nm displacement increases: (a) Stress-strain curve; (b) potential energy with relaxation time; (c) cracking strain with temperature; (d) cracking stress with temperature.

    图 9  不同温度下含边界裂缝金刚石烯破坏构型图

    Fig. 9.  Conformation diagram of the moment of damage of diamondene containing a boundary crack at different temperatures.

    图 10  含边界裂缝金刚石烯与含中心裂缝金刚石烯应力-应变曲线

    Fig. 10.  Stress-strain curves of diamondene with a boundary crack and diamondene with a central crack.

    图 11  含中心裂缝金刚石烯构型图

    Fig. 11.  Conformation diagram of diamondene containing a central crack.

    图 12  不同裂缝长度下含边界裂缝金刚石烯的曲线图 (a) 应力-应变曲线; (b) 起裂应变-裂缝长度曲线

    Fig. 12.  Curves of diamondene with a boundary crack for different crack lengths: (a) Stress-strain curves; (b) crack initiation strain-crack length curve.

    图 13  不同裂缝长度下含边界裂缝金刚石烯破坏时刻构型图

    Fig. 13.  Conformation diagram of the moment of damage of diamondene containing a boundary crack at different crack lengths.

    图 14  不同裂缝方向的含边界裂缝金刚石烯初始构型图 (a) 30°; (b) 45°; (c) 60°

    Fig. 14.  Conformation diagram of diamondene containing a boundary crack with different crack directions: (a) 30°; (b) 45°; (c) 60°.

    图 15  不同裂缝方向下含边界裂缝金刚石烯的应力-应变曲线图

    Fig. 15.  Stress-strain curves of diamondene with a boundary crack for different crack directions.

    图 16  不同裂缝方向下含边界裂缝金刚石烯破坏时刻构型图

    Fig. 16.  Conformation diagram of the moment of damage of diamondene containing a boundary crack at different crack directions.

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Miao T, Yeom S, Wang P, Standley B, Bockrath M 2014 Nano Lett. 14 2982Google Scholar

    [3]

    Zhao J, Zhang G Y, Shi D X 2013 Chin. Phys. B 22 057701Google Scholar

    [4]

    Xu L Q, Wei N, Zheng Y P 2012 J. Mater. Chem. 22 1435Google Scholar

    [5]

    Jiang J W, Leng J T, Li J X, Guo Z R, Chang T C, Guo X M, Zhang T Y 2017 Carbon 118 370Google Scholar

    [6]

    Cai K, Luo J, Ling Y R, Wan J, Qin Q H 2016 Sci. Rep. 6 35157Google Scholar

    [7]

    吴玉程 2019 材料热处理学报 5 16

    Wu Y C 2019 Trans. Mater. Heat Treat 5 16

    [8]

    Barboza A P M, Guimaraes M H D, Massote D V P, Campos L C, Barbosa N N M, Cancado L G, Lacerda R G, Chacham H, Mazzoni M S C, Neves B R A 2011 Adv. Mater. 23 3014Google Scholar

    [9]

    Pakornchote T, Ektarawong A, Alling B, Pinsook U, Tancharakorn S, Busayaporn W, Bovornratanaraks T 2019 Carbon 146 468Google Scholar

    [10]

    Shi J, Cai K, Xie Y M 2018 Mater. Des. 156 125Google Scholar

    [11]

    Cai K, Wang L, Xie Y M 2018 Mater. Des. 149 34Google Scholar

    [12]

    Wang L, Cai K, Wei S Y, Xie Y M 2018 Phys. Chem. Chem. Phys. 20 21136Google Scholar

    [13]

    Wang L, Cai K, Xie Y M, Qin Q H 2019 Nanotechnology 30 075702Google Scholar

    [14]

    Wang L, Li D H, Shi J, Cai K 2020 Comput. Mater. Sci. 173 109459Google Scholar

    [15]

    Martins L G P, Matos M J S, Paschoal A R, Freire P T C, Andrade N F, A A L, Kong J, Neves B R A, de Oliveira A B, Mazzoni M S C, Filho A G S, Cançado L G 2017 Nat. Commun. 8 96Google Scholar

    [16]

    Gao Y, Cao T F, Cellini F, Berger C, de Heer W A, Tosatti E, Riedo E, Bongiorno A 2018 Nat. Nanotechnol. 13 133Google Scholar

    [17]

    辛浩, 韩强, 姚小虎 2008 57 4391Google Scholar

    Xin H, Han Q, Yao X H 2008 Acta Phys. Sin. 57 4391Google Scholar

    [18]

    Wang M C, Yan C, Ma L, Hu N, Chen M W 2012 Comput. Mater. Sci. 54 236Google Scholar

    [19]

    Wang C H, Han Q, Xin D R 2015 Mol. Simul. 41 1Google Scholar

    [20]

    Fu Y, Ragab T, Basaran C T 2016 Comput. Mater. Sci. 124 142Google Scholar

    [21]

    An M R, Deng Q, Li Y L, Song H Y, Su M J 2018 Superlattices Microst. 123 172Google Scholar

    [22]

    王磊, 张冉冉, 方炜 2019 68 064210Google Scholar

    Wang L, Zhang R R, Fang W 2019 Acta Phys. Sin. 68 064210Google Scholar

    [23]

    Li Y B, Sinitskii A, Tour J M 2008 Nat. Mater. 7 966Google Scholar

    [24]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

  • [1] 刘东静, 胡志亮, 周福, 王鹏博, 王振东, 李涛. 基于分子动力学的氮化镓/石墨烯/金刚石界面热导研究.  , 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [2] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理.  , 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [3] 韩旭, 薛斌, 曹毅, 王炜. 自组装生物分子软物质材料及其物理特性.  , 2024, 73(17): 178103. doi: 10.7498/aps.73.20240947
    [4] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控.  , 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [5] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理.  , 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [6] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性.  , 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [7] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真.  , 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [8] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理.  , 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [9] 何欣, 白清顺, 白锦轩. 多晶石墨烯拉伸断裂行为的分子动力学模拟.  , 2016, 65(11): 116101. doi: 10.7498/aps.65.116101
    [10] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究.  , 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [11] 胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏. 高长径比柱状金刚石的高温高压合成与机理研究.  , 2012, 61(7): 078102. doi: 10.7498/aps.61.078102
    [12] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [13] 赵栋才, 任 妮, 马占吉, 邱家稳, 肖更竭, 武生虎. 掺硅类金刚石膜的制备与力学性能研究.  , 2008, 57(3): 1935-1940. doi: 10.7498/aps.57.1935
    [14] 朱宏喜, 毛卫民, 冯惠平, 吕反修, I. I. Vlasov, V. G. Ralchenko, A. V. Khomich. CVD金刚石薄膜孪晶形成的原子机理分析.  , 2007, 56(7): 4049-4055. doi: 10.7498/aps.56.4049
    [15] 马天宝, 胡元中, 王 慧. 基于原子运动模型的类金刚石薄膜生长机理研究.  , 2007, 56(1): 480-486. doi: 10.7498/aps.56.480
    [16] 马天宝, 胡元中, 王 慧. 超薄类金刚石膜生长和结构特性的分子动力学模拟.  , 2006, 55(6): 2922-2927. doi: 10.7498/aps.55.2922
    [17] 马丙现, 贾 瑜, 姚 宁, 杨仕娥, 张兵临. 模板对异构体选择性生长的动力学控制作用与化学气相沉积金刚石的生长机理.  , 2005, 54(9): 4300-4308. doi: 10.7498/aps.54.4300
    [18] 邓蕴沛, 贾天卿, 冷雨欣, 陆海鹤, 李儒新, 徐至展. 飞秒激光烧蚀石英玻璃的实验与理论研究.  , 2004, 53(7): 2216-2220. doi: 10.7498/aps.53.2216
    [19] 郭少锋, 陆启生, 周 萍, 曾学文, 邓少永, 程湘爱. 横向受激布里渊散射诱导破坏的数值研究.  , 2004, 53(11): 3766-3770. doi: 10.7498/aps.53.3766
    [20] 陈光华, 张兴旺, 季亚英, 严辉. 金属与金刚石薄膜接触的电学特性研究.  , 1997, 46(6): 1188-1192. doi: 10.7498/aps.46.1188
计量
  • 文章访问数:  3291
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-08-08
  • 上网日期:  2022-10-10
  • 刊出日期:  2022-10-20

/

返回文章
返回
Baidu
map