-
近六十年来, 以硅为核心材料的半导体技术, 特别是CMOS集成电路技术推动了人类信息社会的深刻变革, 但也逐渐接近其物理极限和工程极限, 全球半导体产业已经进入后摩尔时代. 半导体性碳纳米管具有高迁移率、超薄体等诸多优异的电学特性, 因此成为后摩尔时代新型半导体材料的有力候选. 基于碳纳米管的碳基电子技术历经二十余年发展, 在材料制备、器件物理和晶体管制备等基础性问题中也已经取得了根本性突破, 其产业化进程从原理上看已经没有不可逾越的障碍. 因此, 本文着重介绍了碳基电子技术在后摩尔时代的本征优势, 综述了碳基电子技术的基础性问题、进展和下一步的优化方向, 及其在数字集成电路、射频电子、传感器、三维集成和特种芯片等领域的应用前景. 最后, 本文还分析了碳基电子技术产业化进程中的综合性挑战, 并对其未来发展做出预测和展望.In the past 60 years, silicon-based semiconductor technology has triggered off the profound change of our information society, but it is also gradually approaching to the physical limit and engineering limit as well. Thus, the global semiconductor industry has entered into the post-Moore era. Carbon nanotube has many excellent electronic properties such as high mobility and ultra-thin body, so it has become a hopeful candidate for the new semiconductor material in the post-Moore era. After more than 20 years of development, carbon based electronic technology has made fundamental breakthroughs in many basic problems such as material preparation, Ohmic metal-semiconductor contact and gate engineering. In principle, there is no insurmountable obstacle in its industrialization process now. Therefore, in this paper the intrinsic advantages of carbon based electronic technology in the post-Moore era is introduced, the basic problems, progress and optimization direction of carbon based electronic technology are summarized, the application prospects in the fields of digital circuits, radio frequency electronics, sensing and detection, three-dimensional integration and chips for special applications are presented. Finally, the comprehensive challenges to the industrialization of carbon based electronic technology are analyzed, and its future development is also prospected.
-
Keywords:
- carbon nanotube /
- carbon based electronic technology /
- CMOS transistor /
- integrated circuit
[1] Haensch W, Nowak E J, Dennard R H, Solomon P M, Bryant A, Dokumaci O H, Kumar A, Wang X, Johnson J B, Fischetti M V 2006 IBM J. Res. Dev. 50 339Google Scholar
[2] Cavin R K, Lugli P, Zhirnov V V 2012 Proc. IEEE 100 1720Google Scholar
[3] Semiconductor Industry Association https://www.semiconductors.org/resources/2013-international-technology-roadmap-for-semiconductors-itrs/ [2022-1-5]
[4] Martin Giles https://www.technologyreview.com/2018/07/30/141258/darpa-has-an-ambitious-15-billion-plan-to-reinvent-electronics/ [2022-1-5]
[5] Cao Q, Tersoff J, Farmer D B, Zhu Y, Han S J 2017 Science 356 1369Google Scholar
[6] Pitner G, Zhang Z, Lin Q, Su S K, Gilardi C, Kuo C, Kashyap H, Weiss T, Yu Z, Chao T A, Li L J, Mitra S, Wong H S P, Cai J, Kummel A, Bandaru P, Passlack M 2020 2020 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 12–18, 2020 p3.5.1
[7] Iijima S 1991 Nature 354 56Google Scholar
[8] Tans S J, Verschueren A R, Dekker C 1998 Nature 393 49Google Scholar
[9] Martel R, Schmidt T, Shea H, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447Google Scholar
[10] Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654Google Scholar
[11] Zhang Z, Liang X, Wang S, Yao K, Hu Y, Zhu Y, Chen Q, Zhou W, Li Y, Yao Y, Zhang J, Peng L M 2007 Nano Lett. 7 3603Google Scholar
[12] Javey A, Guo J, Farmer D B, Wang Q, Yenilmez E, Gordon R G, Lundstrom M, Dai H 2004 Nano Lett. 4 1319Google Scholar
[13] Zhang Z, Wang S, Ding L, Liang X, Pei T, Shen J, Xu H, Chen Q, Cui R, Li Y, Peng L M 2008 Nano Lett. 8 3696Google Scholar
[14] Dürkop T, Getty S A, Cobas E, Fuhrer M 2004 Nano Lett. 4 35Google Scholar
[15] Purewal M S, Hong B H, Ravi A, Chandra B, Hone J, Kim P 2007 Phys. Rev. Lett. 98 186808Google Scholar
[16] Xu L, Qiu C, Zhao C, Zhang Z, Peng L M 2019 IEEE Trans. Electron Devices 66 3535Google Scholar
[17] Lin Y, Liang S, Xu L, Liu L, Hu Q, Fan C, Liu Y, Han J, Zhang Z, Peng L M 2021 Adv. Funct. Mater. 32 2104539Google Scholar
[18] Ding L, Liang S, Pei T, Zhang Z, Wang S, Zhou W, Liu J, Peng L M 2012 Appl. Phys. Lett. 100 263116Google Scholar
[19] Qiu C, Zhang Z, Xiao M, Yang Y, Zhong D, Peng L M 2017 Science 355 271Google Scholar
[20] Shi H, Ding L, Zhong D, Han J, Liu L, Xu L, Sun P, Wang H, Zhou J, Fang L, Zhang Z, Peng L M 2021 Nat. Electron. 4 405Google Scholar
[21] Zhang H, Xiang L, Yang Y, Xiao M, Han J, Ding L, Zhang Z, Hu Y, Peng L M 2018 ACS Nano 12 2773Google Scholar
[22] Zhou S, Xiao M, Liu F, He J, Lin Y, Zhang Z 2021 Carbon 180 41Google Scholar
[23] Zhu M, Xiao H, Yan G, Sun P, Jiang J, Cui Z, Zhao J, Zhang Z, Peng L M 2020 Nat. Electron. 3 622Google Scholar
[24] Xiang L, Zhang H, Dong G, Zhong D, Han J, Liang X, Zhang Z, Peng L M, Hu Y 2018 Nat. Electron. 1 237Google Scholar
[25] Xiang L, Xia F, Zhang H, Liu Y, Liu F, Liang X, Hu Y 2019 Adv. Funct. Mater. 29 1905518Google Scholar
[26] Vinet M, Batude P, Tabone C, Previtali B, LeRoyer C, Pouydebasque A, Clavelier L, Valentian A, Thomas O, Michaud S, Sanchez L, Baud L, Roman A, Carron V, Nemouchi F, Mazzocchi V, Grampeix H, Amara A, Deleonibus S, Faynot O 2011 Microelectron. Eng. 88 331Google Scholar
[27] Xie Y, Zhang Z, Zhong D, Peng L 2019 Nano Res. 12 1810Google Scholar
[28] Aly M M S, Gao M, Hills G, Lee C S, Pitner G, Shulaker M M, Wu T F, Asheghi M, Bokor J, Franchetti F, Goodson K E, Kozyrakis C, Markov I, Olukotun K, Pileggi L, Pop E, Rabaey J, Ré C, Wong H S P, Mitra S 2015 Computer 48 24Google Scholar
[29] Cao W, Banerjee K 2020 Nat. Commun. 11 1Google Scholar
[30] Qiu C, Liu F, Xu L, Deng B, Xiao M, Si J, Lin L, Zhang Z, Wang J, Guo H, Peng H, Peng L M 2018 Science 361 387Google Scholar
[31] Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, Shi H, Xiao M, Ding L, Ma Z, Jin C, Zhang Z, Peng L M 2020 Science 368 850Google Scholar
[32] Tulevski G S, Franklin A D, Frank D, Lobez J M, Cao Q, Park H, Afzali A, Han S J, Hannon J B, Haensch W 2014 ACS Nano 8 8730Google Scholar
[33] Chen Z, Appenzeller J, Knoch J, Lin Y M, Avouris P 2005 Nano Lett. 5 1497Google Scholar
[34] Franklin A D 2013 Nature 498 443Google Scholar
[35] Jin Z, Chu H, Wang J, Hong J, Tan W, Li Y 2007 Nano Lett. 7 2073Google Scholar
[36] Kang S J, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam M A, Rotkin S V, Rogers J A 2007 Nat. Nanotechnol. 2 230Google Scholar
[37] Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y 2014 Nature 510 522Google Scholar
[38] Hu Y, Kang L, Zhao Q, Zhong H, Zhang S, Yang L, Wang Z, Lin J, Li Q, Zhang Z, Peng L M, Liu Z, Zhang J 2015 Nat. Commun. 6 1Google Scholar
[39] Jin S H, Dunham S N, Song J, Xie X, Kim J H, Lu C, Islam A, Du F, Kim J, Felts J, Li Y, Xiong F, Wahab M A, Menon M, Cho E, Grosse K L, Lee D J, Chung H U, Pop E, Alam M A, King W P, Huang Y, Rogers J A 2013 Nat. Nanotechnol. 8 347Google Scholar
[40] Zheng M, Jagota A, Strano M S, Santos A P, Barone P, Chou S G, Diner B A, Dresselhaus M S, Mclean R S, Onoa G B, Samsonidze G G, Semke E D, Usrey M, Walls D J 2003 Science 302 1545Google Scholar
[41] Tanaka T, Urabe Y, Nishide D, Kataura H 2009 Appl. Phys. Express 2 125002Google Scholar
[42] Liu H, Nishide D, Tanaka T, Kataura H 2011 Nat. Commun. 2 309Google Scholar
[43] Khripin C Y, Fagan J A, Zheng M 2013 J. Am. Chem. Soc. 135 6822Google Scholar
[44] Lee H W, Yoon Y, Park S, Oh J H, Hong S, Liyanage L S, Wang H, Morishita S, Patil N, Park Y J, Park J J, Spakowitz A, Galli G, Gygi F, Wong H S P, Tok J B H, Kim J M, Bao Z 2011 Nat. Commun. 2 541Google Scholar
[45] Brady G J, Joo Y, Wu M Y, Shea M J, Gopalan P, Arnold M S 2014 ACS Nano 8 11614Google Scholar
[46] Li H, Zhang F, Qiu S, Lv N, Zhao Z, Li Q, Cui Z 2013 Chem. Commun. 49 10492Google Scholar
[47] Gu J, Han J, Liu D, Yu X, Kang L, Qiu S, Jin H, Li H, Li Q, Zhang J 2016 Small 12 4993Google Scholar
[48] Tulevski G S, Franklin A D, Afzali A 2013 ACS Nano 7 2971Google Scholar
[49] Xia J, Dong G, Tian B, Yan Q, Zhang H, Liang X, Peng L M 2016 Nanoscale 8 9988Google Scholar
[50] Chen B, Zhang P, Ding L, Han J, Qiu S, Li Q, Zhang Z, Peng L M 2016 Nano Lett. 16 5120Google Scholar
[51] Yang Y, Ding L, Han J, Zhang Z, Peng L M 2017 ACS Nano 11 4124Google Scholar
[52] Zhong D, Zhang Z, Ding L, Han J, Xiao M, Si J, Xu L, Qiu C, Peng L M 2018 Nat. Electron. 1 40Google Scholar
[53] Zhao C, Zhong D, Qiu C, Han J, Zhang Z, Peng L M 2018 Appl. Phys. Lett. 112 053102Google Scholar
[54] Zhao C, Zhong D, Han J, Liu L, Zhang Z, Peng L M 2019 Adv. Funct. Mater. 29 1808574Google Scholar
[55] Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W S, Dai H 2007 J. Am. Chem. Soc. 129 4890Google Scholar
[56] Cao Q, Han S J, Tulevski G S, Zhu Y, Lu D D, Haensch W 2013 Nat. Nanotechnol. 8 180Google Scholar
[57] Engel M, Small J P, Steiner M, Freitag M, Green A A, Hersam M C, Avouris P 2008 ACS Nano 2 2445Google Scholar
[58] Joo Y, Brady G J, Arnold M S, Gopalan P 2014 Langmuir 30 3460Google Scholar
[59] Wu J, Antaris A, Gong M, Dai H 2014 Adv. Mater. 26 6151Google Scholar
[60] Sun W, Shen J, Zhao Z, Arellano N, Rettner C, Tang J, Cao T, Zhou Z, Ta T, Streit J K, Fagan J A, Schaus T, Zheng M, Han S J, Shih W M, Maune H T, Yin P 2020 Science 368 874Google Scholar
[61] Léonard F, Tersoff J 2000 Phys. Rev. Lett. 84 4693Google Scholar
[62] Fediai A, Ryndyk D A, Seifert G, Mothes S, Claus M, Schröter M, Cuniberti G 2016 Nanoscale 8 10240Google Scholar
[63] Zhang Z, Wang S, Wang Z, Ding L, Pei T, Hu Z, Liang X, Chen Q, Li Y, Peng L M 2009 ACS Nano 3 3781Google Scholar
[64] Ding L, Wang S, Zhang Z, Zeng Q, Wang Z, Pei T, Yang L, Liang X, Shen J, Chen Q, Cui R, Li Y, Peng L M 2009 Nano Lett. 9 4209Google Scholar
[65] Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L M 2012 Nat. Commun. 3 677Google Scholar
[66] IEEE https://irds.ieee.org/editions/2017 [2021-11-8]
[67] Liu L, Qiu C, Zhong D, Si J, Zhang Z, Peng L M 2017 Nanoscale 9 9615Google Scholar
[68] Cao Q, Han S J, Tersoff J, Franklin A D, Zhu Y, Zhang Z, Tulevski G S, Tang J, Haensch W 2015 Science 350 68Google Scholar
[69] Pitner G, Hills G, Llinas J P, Persson K M, Park R, Bokor J, Mitra S, Wong H S P 2019 Nano Lett. 19 1083Google Scholar
[70] Oh H, Kim J J, Song W, Moon S, Kim N, Kim J, Park N 2006 Appl. Phys. Lett. 88 103503Google Scholar
[71] Kim H S, Kim B K, Kim J J, Lee J O, Park N 2007 Appl. Phys. Lett. 91 153113Google Scholar
[72] Wei H, Chen H Y, Liyanage L, Wong H S P, Mitra S 2011 2011 International Electron Devices Meeting Washington, DC, USA, December 5–7, 2011 p23.2.1
[73] Liyanage L S, Pitner G, Xu X, Wong H S P 2014 Proceedings of Technical Program-2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) Hsinchu, Taiwan, China, April 28–30, 2014 p1
[74] Moriyama N, Ohno Y, Kitamura T, Kishimoto S, Mizutani T 2010 Nanotechnology 21 165201Google Scholar
[75] Zhang J, Wang C, Fu Y, Che Y, Zhou C 2011 ACS Nano 5 3284Google Scholar
[76] Liang S, Zhang Z, Pei T, Li R, Li Y, Peng L M 2013 Nano Res. 6 535Google Scholar
[77] Hafizi R, Tersoff J, Perebeinos V 2017 Phys. Rev. Lett. 119 207701Google Scholar
[78] Perebeinos V, Tersoff J 2015 Phys. Rev. Lett. 114 085501Google Scholar
[79] Pikus F, Likharev K 1997 Appl. Phys. Lett. 71 3661Google Scholar
[80] Xu L, Yang J, Qiu C, Liu S, Zhou W, Li Q, Shi B, Ma J, Yang C, Lu J, Zhang Z 2021 ACS Appl. Mater. Interfaces 13 31957Google Scholar
[81] Wang N P, Heinze S, Tersoff J 2007 Nano Lett. 7 910Google Scholar
[82] Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar
[83] Franklin A D, Tulevski G S, Han S J, Shahrjerdi D, Cao Q, Chen H Y, Wong H S P, Haensch W 2012 ACS Nano 6 1109Google Scholar
[84] Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H 2002 Nat. Mater. 1 241Google Scholar
[85] Franklin A D, Koswatta S O, Farmer D B, Smith J T, Gignac L, Breslin C M, Han S J, Tulevski G S, Miyazoe H, Haensch W, Tersoff J 2013 Nano Lett. 13 2490Google Scholar
[86] Chen Z, Farmer D, Xu S, Gordon R, Avouris P, Appenzeller J 2008 IEEE Electron Device Lett. 29 183Google Scholar
[87] Kim S, Xuan Y, Ye P, Mohammadi S, Back J, Shim M 2007 Appl. Phys. Lett. 90 163108Google Scholar
[88] Lu Y, Bangsaruntip S, Wang X, Zhang L, Nishi Y, Dai H 2006 J. Am. Chem. Soc. 128 3518Google Scholar
[89] Zhang Z, Wang S, Ding L, Liang X, Xu H, Shen J, Chen Q, Cui R, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117Google Scholar
[90] Franklin A D, Bojarczuk N A, Copel M 2013 Appl. Phys. Lett. 102 013108Google Scholar
[91] Wang Z, Xu H, Zhang Z, Wang S, Ding L, Zeng Q, Yang L, Pei T, Liang X, Gao M, Peng L M 2010 Nano Lett. 10 2024Google Scholar
[92] Ding L, Zhang Z, Su J, Li Q, Peng L M 2014 Nanoscale 6 11316Google Scholar
[93] Xu L, Gao N, Zhang Z, Peng L M 2018 Appl. Phys. Lett. 113 083105Google Scholar
[94] Banerjee S, Hemraj-Benny T, Wong S S 2005 Adv. Mater. 17 17Google Scholar
[95] Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X 2019 Nat. Electron. 2 563Google Scholar
[96] Kemelbay A, Tikhonov A, Aloni S, Kuykendall T R 2019 Nanomaterials 9 1085Google Scholar
[97] Sung D, Hong S, Kim Y H, Park N, Kim S, Maeng S L, Kim K C 2006 Appl. Phys. Lett. 89 243110Google Scholar
[98] Kim W, Javey A, Vermesh O, Wang Q, Li Y, Dai H 2003 Nano Lett. 3 193Google Scholar
[99] Park R S, Shulaker M M, Hills G, Suriyasena Liyanage L, Lee S, Tang A, Mitra S, Wong H S P 2016 ACS Nano 10 4599Google Scholar
[100] Park R S, Hills G, Sohn J, Mitra S, Shulaker M M, Wong H S P 2017 ACS Nano 11 4785Google Scholar
[101] Hu Z, Tulevski G S, Hannon J B, Afzali A, Liehr M, Park H 2015 Appl. Phys. Lett. 106 243106Google Scholar
[102] Cao Q, Han S J, Penumatcha A V, Frank M M, Tulevski G S, Tersoff J, Haensch W E 2015 ACS Nano 9 1936Google Scholar
[103] Cao Q, Tersoff J, Han S J, Penumatcha A V 2015 Phys. Rev. Appl. 4 024022Google Scholar
[104] Zhong D, Zhao C, Liu L, Zhang Z, Peng LM 2018 Appl. Phys. Lett. 112 153109Google Scholar
[105] Qiu C, Zhang Z, Zhong D, Si J, Yang Y, Peng L M 2015 ACS Nano 9 969Google Scholar
[106] Xu L, Qiu C, Peng L M, Zhang Z 2021 Nano Res. 14 976Google Scholar
[107] Liu L, Zhao C, Ding L, Peng L M, Zhang Z 2020 Nano Res. 13 1875Google Scholar
[108] Zhao C, Zhong D, Liu L, Yang Y, Shi H, Peng L M, Zhang Z 2020 ACS Nano 14 15267Google Scholar
[109] Tian B, Liang X, Xia J, Zhang H, Dong G, Huang Q, Peng L, Xie S 2017 Nanoscale 9 4388Google Scholar
[110] Franklin A D, Chen Z 2010 Nat. Nanotechnol. 5 858Google Scholar
[111] Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74Google Scholar
[112] Chen Z, Appenzeller J, Lin Y M, Sippel-Oakley J, Rinzler A G, Tang J, Wind S J, Solomon P M, Avouris P 2006 Science 311 1735Google Scholar
[113] Yang Y, Ding L, Chen H, Han J, Zhang Z, Peng L M 2018 Nano Res. 11 300Google Scholar
[114] Han S J, Tang J, Kumar B, Falk A, Farmer D, Tulevski G, Jenkins K, Afzali A, Oida S, Ott J, Hannon J, Haensch W 2017 Nat. Nanotechnol. 12 861Google Scholar
[115] Bohr M 2007 IEEE Solid-State Circuits Society Newsletter 12 11Google Scholar
[116] Ionescu A M, Riel H 2011 Nature 479 329Google Scholar
[117] Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar
[118] Xiao M, Lin Y, Xu L, Deng B, Peng H, Peng L M, Zhang Z 2020 Adv. Electron. Mater. 6 2000258Google Scholar
[119] Bachtold A, Hadley P, Nakanishi T, Dekker C 2001 Science 294 1317Google Scholar
[120] Cao Q, Kim H S, Pimparkar N, Kulkarni J P, Wang C, Shim M, Roy K, Alam M A, Rogers J A 2008 Nature 454 495Google Scholar
[121] Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S P, Mitra S 2013 Nature 501 526Google Scholar
[122] Hills G, Lau C, Wright A, Fuller S, Bishop M D, Srimani T, Kanhaiya P, Ho R, Amer A, Stein Y, Murphy D, Arvind, Chandrakasan A, Shulaker M M 2019 Nature 572 595Google Scholar
[123] Burke P J 2004 Solid-State Electron. 48 1981Google Scholar
[124] Guo J, Hasan S, Javey A, Bosman G, Lundstrom M 2005 IEEE Trans. Nanotechnol. 4 715Google Scholar
[125] Koswatta S O, Valdes-Garcia A, Steiner M B, Lin Y M, Avouris P 2011 IEEE Trans. Microwave Theory Tech. 59 2739Google Scholar
[126] Baumgardner J E, Pesetski A A, Murduck J M, Przybysz J X, Adam J D, Zhang H 2007 Appl. Phys. Lett. 91 052107Google Scholar
[127] Wang C, Badmaev A, Jooyaie A, Bao M, Wang K L, Galatsis K, Zhou C 2011 ACS Nano 5 4169Google Scholar
[128] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502Google Scholar
[129] Kelly M 2013 Semicond. Sci. Technol. 28 122001Google Scholar
[130] Bethoux J M, Happy H, Dambrine G, Derycke V, Goffman M, Bourgoin J P 2006 IEEE Electron Device Lett. 27 681Google Scholar
[131] Le Louarn A, Kapche F, Bethoux J M, Happy H, Dambrine G, Derycke V, Chenevier P, Izard N, Goffman M, Bourgoin J P 2007 Appl. Phys. Lett. 90 233108Google Scholar
[132] Nougaret L, Happy H, Dambrine G, Derycke V, Bourgoin J P, Green A, Hersam M 2009 Appl. Phys. Lett. 94 243505Google Scholar
[133] Kocabas C, Dunham S, Cao Q, Cimino K, Ho X, Kim H S, Dawson D, Payne J, Stuenkel M, Zhang H, Banks T, Feng M, Rotkin S V, Rogers J A 2009 Nano Lett. 9 1937Google Scholar
[134] Steiner M, Engel M, Lin Y M, Wu Y, Jenkins K, Farmer D B, Humes J J, Yoder N L, Seo J W T, Green A A, Hersam C M, Krupke R, Avouris P 2012 Appl. Phys. Lett. 101 053123Google Scholar
[135] Che Y, Badmaev A, Jooyaie A, Wu T, Zhang J, Wang C, Galatsis K, Enaya H A, Zhou C 2012 ACS Nano 6 6936Google Scholar
[136] Che Y, Lin Y C, Kim P, Zhou C 2013 ACS Nano 7 4343Google Scholar
[137] Cao Y, Che Y, Gui H, Cao X, Zhou C 2016 Nano Res. 9 363Google Scholar
[138] Cao Y, Che Y, Seo J W T, Gui H, Hersam M C, Zhou C 2016 Appl. Phys. Lett. 108 233105Google Scholar
[139] Cao Y, Brady G J, Gui H, Rutherglen C, Arnold M S, Zhou C 2016 ACS Nano 10 6782Google Scholar
[140] Zhong D, Shi H, Ding L, Zhao C, Liu J, Zhou J, Zhang Z, Peng L M 2019 ACS Appl. Mater. Interfaces 11 42496Google Scholar
[141] Zhou J, Liu L, Shi H, Zhu M, Cheng X, Ren L, Ding L, Peng L M, Zhang Z 2021 ACS Appl. Mater. Interfaces 13 37475Google Scholar
[142] Rutherglen C, Kane A A, Marsh P F, Cain T A, Hassan B I, AlShareef M R, Zhou C, Galatsis K 2019 Nat. Electron. 2 530Google Scholar
[143] Marsh P F, Rutherglen C, Kane A A, Cain T A, Galatsis K, Maas S, AlShareef M R 2019 Microwave J. 62 22
[144] Liu L, Ding L, Zhong D, Han J, Wang S, Meng Q, Qiu C, Zhang X, Peng L M, Zhang Z 2019 ACS Nano 13 2526Google Scholar
[145] Star A, Han T R, Gabriel J C P, Bradley K, Grüner G 2003 Nano Lett. 3 1421Google Scholar
[146] Zhu Z 2017 Nano-Micro Lett. 9 1Google Scholar
[147] Heller I, Janssens A M, Männik J, Minot E D, Lemay S G, Dekker C 2008 Nano Lett. 8 591Google Scholar
[148] Liang Y, Xiao M, Wu D, Lin Y, Liu L, He J, Zhang G, Peng L M, Zhang Z 2020 ACS Nano 14 8866Google Scholar
[149] Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, Peng L 2018 ACS Sens. 3 749Google Scholar
[150] Collins P G, Fuhrer M, Zettl A 2000 Appl. Phys. Lett. 76 894Google Scholar
[151] Tersoff J 2007 Nano Lett. 7 194Google Scholar
[152] Shulaker M M, Wu T F, Pal A, Zhao L, Nishi Y, Saraswat K, Wong H S P, Mitra S 2014 2014 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 15–17, 2014 p27.4.1
[153] Wu T F, Li H, Huang P C, Rahimi A, Hills G, Hodson B, Hwang W, Rabaey J M, Wong H S P, Shulaker M M 2018 IEEE J. Solid-State Circuit 53 3183Google Scholar
[154] Xie Y, Zhang Z 2021 Sci. China Inf. Sci. 64 1Google Scholar
[155] Naeemi A, Meindl J D 2009 Carbon nanotube electronics (Berlin: Springer) pp163–190
[156] Koo K H, Cho H, Kapur P, Saraswat K C 2007 IEEE Trans. Electron Devices 54 3206Google Scholar
[157] Naeemi A, Meindl J D 2008 IEEE Trans. Electron Devices 55 2574Google Scholar
[158] Lu P Y, Yen C M, Chang S Y, Feng Y J, Lien C, Hu C W, Yao C W, Lee M H, Liao M H 2020 2020 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 12–18, 2020 p12.6.1
[159] Zhu M, Zhou J, Sun P, Peng L M, Zhang Z 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar
[160] Zhu M G, Zhang Z, Peng L M 2019 Adv. Electron. Mater. 5 1900313Google Scholar
[161] Vandersypen L, Van Leeuwenhoek A 2017 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, February 5–9, 2017 p24
[162] Xie Y, Zhong D, Fan C, Deng X, Peng L M, Zhang Z 2021 Adv. Electron. Mater. 7 2100202Google Scholar
[163] Kim S H, Haines C S, Li N, Kim K J, Mun T J, Choi C, Di J, Oh Y J, Oviedo J P, Bykova J, Fang S, Jiang N, Liu Z, Wang R, Kumar P, Qiao R, Priya S, Cho K, Kim M, Lucas M S, Drummy L F. Maruyama B, Lee D Y, Lepró X, Gao E, Albarq D, Robles R O, Kim S J, Baughman R H 2017 Science 357 773Google Scholar
[164] Tang J, Cao Q, Tulevski G, Jenkins K A, Nela L, Farmer D B, Han S J 2018 Nat. Electron. 1 191Google Scholar
[165] Zhao T Y, Zhang D D, Qu T Y, Fang L L, Zhu Q B, Sun Y, Cai T H, Chen M L, Wang B W, Du J H, Ren W C, Yan X, Li Q W, Qiu S, Sun D M 2019 ACS Appl. Mater. Interfaces 11 11699Google Scholar
[166] Bishop M D, Hills G, Srimani T, Lau C, Murphy D, Fuller S, Humes J, Ratkovich A, Nelson M, Shulaker M M 2020 Nat. Electron. 3 492Google Scholar
-
图 1 碳纳米管及碳纳米管晶体管示意图 (a) (14, 7)半导体性碳纳米管截面图; (b) (14, 7)半导体性碳纳米管侧视图; (c) 首个P型自对准结构碳纳米管晶体管[12]; (d) 首个N型自对准结构碳纳米管晶体管[13]
Fig. 1. Schematic diagram of carbon nanotube and carbon nanotube transistors: (a) Cross section of (14, 7) semiconducting carbon nanotube; (b) side view of (14, 7) semiconducting carbon nanotube; (c) the first P-type self-aligned carbon nanotube transistor[12]; (d) the first N-type self-aligned carbon nanotube transistor[13].
图 2 (a) 理想的阵列碳纳米管顶栅晶体管示意图[31]; (b) 不同制备方法得到的碳纳米管的密度和半导体纯度对比, 其中蓝色方框区域为理想指标区间[31]
Fig. 2. (a) Schematic diagram of an ideal carbon nanotube array top gate transistor[31]; (b) comparison of the density and semiconductor purity of carbon nanotubes prepared by different methods, where the blue box area is the ideal index range[31].
图 4 DLSA法碳纳米管阵列自组装技术[31] (a) DLSA法自组装原理示意图; (b) 阵列碳纳米管晶体管的输出曲线; (c) 阵列碳纳米管晶体管的跨导对比; (d) 阵列碳纳米管环振电路的输出频谱
Fig. 4. DLSA self-assembly technology for carbon nanotube array[31]: (a) Principle schematic diagram of DLSA self-assembly; (b) output curves of a carbon nanotube array transistor; (c) benchmarking transconductance of carbon nanotube array transistors; (d) output frequency spectrum for a ring oscillator circuit made of carbon nanotube array.
图 5 碳纳米管无掺杂CMOS技术[63] (a) 以金属Pd作为P型电极, 以金属Sc作为N型电极的碳纳米管CMOS示意图; (b) 碳纳米管CMOS的迁移率特性
Fig. 5. Doping free carbon nanotube CMOS technology[63]: (a) Schematic diagram of the carbon nanotube CMOS with metal Pd as P-type electrode and metal Sc as N-type electrode; (b) mobility characteristics of the carbon nanotube CMOS.
图 6 碳纳米管晶体管的不同接触构型以及接触电阻的缩减规律 (a) 碳化钼末端接触示意图[68]; (b) 碳化钼末端接触的接触电阻缩减规律(红色直线)[68]; (c) 金属Pd或Sc作侧边接触的接触电阻缩减规律[67]; (d) 金属电极侧边接触及电荷注入转移长度示意图[67]
Fig. 6. Different contact configurations of carbon nanotube transistors and the scaling trend of contact resistance: (a) Schematic diagram of molybdenum carbide end contact[68]; (b) the contact resistance’s scaling trend of molybdenum carbide end contact (red straight line)[68]; (c) the contact resistance’s scaling trend of metal Pd or Sc as side contacts[67]; (d) schematic diagram of metal electrode side contact and transfer length of charge injection[67].
图 7 两种典型的碳纳米管栅介质 (a) 无定形碳辅助形核的ALD法氧化铪(约3.5 nm)[19]; (b) 金属蒸镀后热氧化形成的氧化钇(约5 nm)[91]
Fig. 7. Two typical kinds of carbon nanotube gate dielectrics: (a) ALD hafnium oxide with amorphous carbon assisted nucleation (~3.5 nm) [19]; (b) yttrium oxide formed by thermal oxidation after metal evaporation (~5 nm) [91].
图 8 栅介质缺陷导致的栅氧电荷效应 (a) 各种栅氧电荷示意图; (b) 随机固定电荷主导的阈值电压波动[102]; (c) 碳纳米管MOS结构的界面态密度粗略估计[99]
Fig. 8. Gate oxide charge effects caused by various dielectric defects: (a) Schematic diagram of various gate oxide charges; (b) threshold voltage fluctuation dominated by random fixed charges[102]; (c) a rough estimation of interface states density in a carbon nanotube MOS structure[99].
图 9 不同栅金属对碳纳米管晶体管阈值电压的调制 (a) 单一金属的分立功函数调制[17]; (b) 叠层金属的准连续功函数调制, 底层是变厚度的钯, 顶层是固定厚度的钪[104]
Fig. 9. Threshold voltage modulation of carbon nanotube transistor using different gate metals: (a) Discrete work function modulation using single metal layer[17]; (b) quasi continuous work function modulation using a metal stack, the bottom layer is palladium with variable thickness, and the top layer is scandium with fixed thickness[104].
图 10 三种双极性抑制技术 (a), (b), (c) 反馈栅结构示意图、能带图和转移曲线对比[107]; (d), (e), (f) SCMOS示意图、能带图和转移曲线对比[108]; (g), (h), (i) L型栅结构示意图、能带图和转移曲线对比[106]
Fig. 10. Three bipolar suppression techniques: (a), (b), (c) Schematic diagram, energy band diagram and transfer curve comparison of feedback gate structure[107]; (d), (e), (f) schematic diagram, energy band diagram and transfer curve comparison of SCMOS structure[108]; (g), (h), (i) schematic diagram, energy band diagram and transfer curve comparison of L-type gate structure[106].
图 11 碳纳米管晶体管的scaling down极限[19] (a), (c) P型和N型碳纳米管晶体管的透射电子显微镜(TEM)截面图, 其中沟道和栅极长度分别为20 nm和10 nm; (b), (d) 碳纳米管和硅CMOS FET的门延迟和能量延迟积(EDP)随栅长缩减的变化趋势比较, 蓝色实线表示P型硅FET的实验数据拟合, 而绿色实线表示N型硅FET, 蓝色星和绿色星分别代表P型和N型碳纳米管晶体管; (e), (f) 5 nm栅长碳纳米管晶体管的扫描电子显微镜(SEM)俯视图及其转移特性曲线
Fig. 11. Scaling down limit of carbon nanotube transistors[19]. (a), (c) Cross-sectional TEM micrographs of P-type and N-type carbon nanotube FETs, where the channel and gate lengths are respectively 20 nm and 10 nm. (b), (d) comparisons of scaling trends of gate delay and EDP between CNT and Si CMOS FETs. Blue solid line indicates the experiment data fitting for the P-type Si-MOSFETs, whereas green solid line indicates the N-type Si-MOSFETs, the blue and green stars respectively represent the P-type and N-type CNTFETs. (e), (f) SEM top view and transfer characteristic curves of a 5 nm gate length carbon nanotube transistor.
图 12 基于碳纳米管沟道和石墨烯电极的狄拉克冷源晶体管(DSFET)[30] (a) DSFET的器件结构及能带示意图; (b) DSFET的亚60特性机理分析; (c) DSFET的转移特性曲线(红色); (d) 不同亚60器件的SS与I60分布对比
Fig. 12. Dirac cold source transistor based on carbon nanotube channel and graphene electrode[30]: (a) Device structure and energy band diagram of DSFET; (b) mechanism analysis of sub-60 characteristic of DSFET; (c) transfer characteristic curve (red) of DSFET; (d) comparison of SS and I60 distribution among different sub-60 devices.
图 13 碳纳米管CMOS器件和电路的制备及数字逻辑功能演示 (a) 高度对称的碳纳米管CMOS输出特性曲线[51]; (b) 碳纳米管4位全加器的照片[51]; (c) 120个典型顶栅碳纳米管FET的输出特性曲线(Vds = –1 V)[50]; (d) 碳纳米管4位全加器的逻辑测试结果(VDD = –2 V)[51]
Fig. 13. Fabrication of carbon nanotube CMOS devices and circuits, and demonstration of digital logic functions: (a) Output characteristic curves of highly symmetrical carbon nanotube CMOS[51]; (b) micrograph depicting a carbon nanotube 4-bit full adder[51]; (c) transfer characteristic curves of 120 typical top-gate carbon nanotube FETs, Vds = –1 V[50]; (d) functionality measurements of the carbon nanotube 4-bit full adder at a VDD of –2 V [51].
图 14 碳纳米管阵列射频晶体管的频率特性[20], 其中(a) 器件沟道区域的SEM照片, (b) 器件本征截止频率随栅长缩减的变化规律, (c) 本征截止频率处于太赫兹应用范围内; 碳纳米管阵列射频放大器的功率增益和线性度特性[20], 其中(d) 放大器测试电路的示意图, (e) 18 GHz工作频率下的输出增益特性, (f) 不同射频放大器的OIP3/Pd.c.特性对比
Fig. 14. Frequency characteristics of carbon nanotube array RF transistors[20]: (a) SEM photos of device’s channel region; (b) the scaling trend of intrinsic cut-off frequency under different gate lengths; (c) the intrinsic cut-off frequency is in the terahertz application range. Power gain and linearity of carbon nanotube array RF amplifiers[20]: (d) Schematic diagram of the amplifier test circuit; (e) output gain characteristics at 18 GHz; (f) comparison of OIP3/Pd.c. characteristics of different RF amplifiers.
图 15 基于碳纳米管浮栅晶体管的生物传感器[148]与气体传感器[22] (a) 碳纳米管生物传感器示意图[148]; (b) 碳纳米管生物传感器对DNA序列的检测限[148]; (c) 碳纳米管生物传感器对囊泡的检测限[148]; (d) 碳纳米管氢气传感器示意图[22]; (e) 碳纳米管氢气传感器工作在100 ℃的检测限[22]; (f) 碳纳米管氢气传感器的响应率和检测限分布, 浅蓝色椭圆区域为核电安全应用范围[22]
Fig. 15. Biosensor[148] and gas sensor[22] based on the carbon nanotube floating gate transistor: (a) Schematic diagram of the carbon nanotube biosensor[148]; (b) the limit of detection (LOD) of a carbon nanotube biosensor for DNA sequence[148]; (c) LOD of a carbon nanotube biosensor for vesicles[148]; (d) schematic diagram of the carbon nanotube hydrogen sensor[22]; (e) LOD of a carbon nanotube hydrogen sensor operating under 100 ℃[22]; (f) the response rate and LOD distribution of carbon nanotube hydrogen sensor, and the light blue oval area is the scope of nuclear power safety application[22].
图 17 抗辐照可修复的碳纳米管晶体管与电路[23] (a) Co-60 γ射线对器件的辐射损伤示意图; (b) 聚酰亚胺衬底上印刷的离子胶碳纳米管晶体管的照片; (c) 离子胶类CMOS反相器的多次辐照损伤和修复过程; (d) 离子胶抗辐照碳纳米管晶体管和反相器的性能对比
Fig. 17. Radiation-hardened and repairable carbon nanotube transistors and circuits[23]: (a) Schematic diagram of radiation damage to devices by Co-60 γ-ray; (b) photograph of printed ion gel CNT FETs on polyimide substrates; (c) multiple cycles of irradiation and repairing of ion gel CMOS-like inverters; (d) performance benchmark of radiation-hardened ion gel CNT FETs and inverters.
表 1 300 nm栅长下不同器件结构的碳纳米管场效应晶体管参数比较[106]
Table 1. Benchmark of CNT FETs with different device structures at the same gate length of 300 nm[106].
Structure Ioff /(nA·μm–1) SS/(mV·dec–1) On/off ratio Self-aligned process Scalability FBG 0.49 73 3.84 × 106 No No Normal-spacer 15.85 85 8.91 × 104 Yes Yes HD BOX 5.75 80 6.17 × 105 No No L-shaped-spacer 0.38 70 1.73 × 106 Yes Yes 表 2 碳基电子技术产业化进程中的综合性挑战
Table 2. Comprehensive challenges in the industrialization of carbon based electronic technology
挑战类别 发展目标 近期 中长期 长期 材料 各指标满足研发需求、制备8 in晶圆 各指标满足碳基超大规模集成电路需求 洁净度达到业界标准、
制备12 in大晶圆器件工艺 接触电阻优化、
栅结构和漏端工程碳基平面集成工艺、
硅基后道工艺兼容碳基三维集成工艺、
硅基前道工艺兼容均一性和可靠性 优化材料均一性和器件工艺可靠性 开发碳基器件和电路的钝化封装工艺 提高超大规模碳基集成电路的良率 电路与系统设计 器件模型及PDK 完整EDA工具 三维集成系统、TPU等新型架构 标准化平台 材料制备表征平台、器件电路测试平台 工艺研发平台、
工艺制造平台碳基芯片生产平台 -
[1] Haensch W, Nowak E J, Dennard R H, Solomon P M, Bryant A, Dokumaci O H, Kumar A, Wang X, Johnson J B, Fischetti M V 2006 IBM J. Res. Dev. 50 339Google Scholar
[2] Cavin R K, Lugli P, Zhirnov V V 2012 Proc. IEEE 100 1720Google Scholar
[3] Semiconductor Industry Association https://www.semiconductors.org/resources/2013-international-technology-roadmap-for-semiconductors-itrs/ [2022-1-5]
[4] Martin Giles https://www.technologyreview.com/2018/07/30/141258/darpa-has-an-ambitious-15-billion-plan-to-reinvent-electronics/ [2022-1-5]
[5] Cao Q, Tersoff J, Farmer D B, Zhu Y, Han S J 2017 Science 356 1369Google Scholar
[6] Pitner G, Zhang Z, Lin Q, Su S K, Gilardi C, Kuo C, Kashyap H, Weiss T, Yu Z, Chao T A, Li L J, Mitra S, Wong H S P, Cai J, Kummel A, Bandaru P, Passlack M 2020 2020 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 12–18, 2020 p3.5.1
[7] Iijima S 1991 Nature 354 56Google Scholar
[8] Tans S J, Verschueren A R, Dekker C 1998 Nature 393 49Google Scholar
[9] Martel R, Schmidt T, Shea H, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447Google Scholar
[10] Javey A, Guo J, Wang Q, Lundstrom M, Dai H 2003 Nature 424 654Google Scholar
[11] Zhang Z, Liang X, Wang S, Yao K, Hu Y, Zhu Y, Chen Q, Zhou W, Li Y, Yao Y, Zhang J, Peng L M 2007 Nano Lett. 7 3603Google Scholar
[12] Javey A, Guo J, Farmer D B, Wang Q, Yenilmez E, Gordon R G, Lundstrom M, Dai H 2004 Nano Lett. 4 1319Google Scholar
[13] Zhang Z, Wang S, Ding L, Liang X, Pei T, Shen J, Xu H, Chen Q, Cui R, Li Y, Peng L M 2008 Nano Lett. 8 3696Google Scholar
[14] Dürkop T, Getty S A, Cobas E, Fuhrer M 2004 Nano Lett. 4 35Google Scholar
[15] Purewal M S, Hong B H, Ravi A, Chandra B, Hone J, Kim P 2007 Phys. Rev. Lett. 98 186808Google Scholar
[16] Xu L, Qiu C, Zhao C, Zhang Z, Peng L M 2019 IEEE Trans. Electron Devices 66 3535Google Scholar
[17] Lin Y, Liang S, Xu L, Liu L, Hu Q, Fan C, Liu Y, Han J, Zhang Z, Peng L M 2021 Adv. Funct. Mater. 32 2104539Google Scholar
[18] Ding L, Liang S, Pei T, Zhang Z, Wang S, Zhou W, Liu J, Peng L M 2012 Appl. Phys. Lett. 100 263116Google Scholar
[19] Qiu C, Zhang Z, Xiao M, Yang Y, Zhong D, Peng L M 2017 Science 355 271Google Scholar
[20] Shi H, Ding L, Zhong D, Han J, Liu L, Xu L, Sun P, Wang H, Zhou J, Fang L, Zhang Z, Peng L M 2021 Nat. Electron. 4 405Google Scholar
[21] Zhang H, Xiang L, Yang Y, Xiao M, Han J, Ding L, Zhang Z, Hu Y, Peng L M 2018 ACS Nano 12 2773Google Scholar
[22] Zhou S, Xiao M, Liu F, He J, Lin Y, Zhang Z 2021 Carbon 180 41Google Scholar
[23] Zhu M, Xiao H, Yan G, Sun P, Jiang J, Cui Z, Zhao J, Zhang Z, Peng L M 2020 Nat. Electron. 3 622Google Scholar
[24] Xiang L, Zhang H, Dong G, Zhong D, Han J, Liang X, Zhang Z, Peng L M, Hu Y 2018 Nat. Electron. 1 237Google Scholar
[25] Xiang L, Xia F, Zhang H, Liu Y, Liu F, Liang X, Hu Y 2019 Adv. Funct. Mater. 29 1905518Google Scholar
[26] Vinet M, Batude P, Tabone C, Previtali B, LeRoyer C, Pouydebasque A, Clavelier L, Valentian A, Thomas O, Michaud S, Sanchez L, Baud L, Roman A, Carron V, Nemouchi F, Mazzocchi V, Grampeix H, Amara A, Deleonibus S, Faynot O 2011 Microelectron. Eng. 88 331Google Scholar
[27] Xie Y, Zhang Z, Zhong D, Peng L 2019 Nano Res. 12 1810Google Scholar
[28] Aly M M S, Gao M, Hills G, Lee C S, Pitner G, Shulaker M M, Wu T F, Asheghi M, Bokor J, Franchetti F, Goodson K E, Kozyrakis C, Markov I, Olukotun K, Pileggi L, Pop E, Rabaey J, Ré C, Wong H S P, Mitra S 2015 Computer 48 24Google Scholar
[29] Cao W, Banerjee K 2020 Nat. Commun. 11 1Google Scholar
[30] Qiu C, Liu F, Xu L, Deng B, Xiao M, Si J, Lin L, Zhang Z, Wang J, Guo H, Peng H, Peng L M 2018 Science 361 387Google Scholar
[31] Liu L, Han J, Xu L, Zhou J, Zhao C, Ding S, Shi H, Xiao M, Ding L, Ma Z, Jin C, Zhang Z, Peng L M 2020 Science 368 850Google Scholar
[32] Tulevski G S, Franklin A D, Frank D, Lobez J M, Cao Q, Park H, Afzali A, Han S J, Hannon J B, Haensch W 2014 ACS Nano 8 8730Google Scholar
[33] Chen Z, Appenzeller J, Knoch J, Lin Y M, Avouris P 2005 Nano Lett. 5 1497Google Scholar
[34] Franklin A D 2013 Nature 498 443Google Scholar
[35] Jin Z, Chu H, Wang J, Hong J, Tan W, Li Y 2007 Nano Lett. 7 2073Google Scholar
[36] Kang S J, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam M A, Rotkin S V, Rogers J A 2007 Nat. Nanotechnol. 2 230Google Scholar
[37] Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J Q, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F, Li Y 2014 Nature 510 522Google Scholar
[38] Hu Y, Kang L, Zhao Q, Zhong H, Zhang S, Yang L, Wang Z, Lin J, Li Q, Zhang Z, Peng L M, Liu Z, Zhang J 2015 Nat. Commun. 6 1Google Scholar
[39] Jin S H, Dunham S N, Song J, Xie X, Kim J H, Lu C, Islam A, Du F, Kim J, Felts J, Li Y, Xiong F, Wahab M A, Menon M, Cho E, Grosse K L, Lee D J, Chung H U, Pop E, Alam M A, King W P, Huang Y, Rogers J A 2013 Nat. Nanotechnol. 8 347Google Scholar
[40] Zheng M, Jagota A, Strano M S, Santos A P, Barone P, Chou S G, Diner B A, Dresselhaus M S, Mclean R S, Onoa G B, Samsonidze G G, Semke E D, Usrey M, Walls D J 2003 Science 302 1545Google Scholar
[41] Tanaka T, Urabe Y, Nishide D, Kataura H 2009 Appl. Phys. Express 2 125002Google Scholar
[42] Liu H, Nishide D, Tanaka T, Kataura H 2011 Nat. Commun. 2 309Google Scholar
[43] Khripin C Y, Fagan J A, Zheng M 2013 J. Am. Chem. Soc. 135 6822Google Scholar
[44] Lee H W, Yoon Y, Park S, Oh J H, Hong S, Liyanage L S, Wang H, Morishita S, Patil N, Park Y J, Park J J, Spakowitz A, Galli G, Gygi F, Wong H S P, Tok J B H, Kim J M, Bao Z 2011 Nat. Commun. 2 541Google Scholar
[45] Brady G J, Joo Y, Wu M Y, Shea M J, Gopalan P, Arnold M S 2014 ACS Nano 8 11614Google Scholar
[46] Li H, Zhang F, Qiu S, Lv N, Zhao Z, Li Q, Cui Z 2013 Chem. Commun. 49 10492Google Scholar
[47] Gu J, Han J, Liu D, Yu X, Kang L, Qiu S, Jin H, Li H, Li Q, Zhang J 2016 Small 12 4993Google Scholar
[48] Tulevski G S, Franklin A D, Afzali A 2013 ACS Nano 7 2971Google Scholar
[49] Xia J, Dong G, Tian B, Yan Q, Zhang H, Liang X, Peng L M 2016 Nanoscale 8 9988Google Scholar
[50] Chen B, Zhang P, Ding L, Han J, Qiu S, Li Q, Zhang Z, Peng L M 2016 Nano Lett. 16 5120Google Scholar
[51] Yang Y, Ding L, Han J, Zhang Z, Peng L M 2017 ACS Nano 11 4124Google Scholar
[52] Zhong D, Zhang Z, Ding L, Han J, Xiao M, Si J, Xu L, Qiu C, Peng L M 2018 Nat. Electron. 1 40Google Scholar
[53] Zhao C, Zhong D, Qiu C, Han J, Zhang Z, Peng L M 2018 Appl. Phys. Lett. 112 053102Google Scholar
[54] Zhao C, Zhong D, Han J, Liu L, Zhang Z, Peng L M 2019 Adv. Funct. Mater. 29 1808574Google Scholar
[55] Li X, Zhang L, Wang X, Shimoyama I, Sun X, Seo W S, Dai H 2007 J. Am. Chem. Soc. 129 4890Google Scholar
[56] Cao Q, Han S J, Tulevski G S, Zhu Y, Lu D D, Haensch W 2013 Nat. Nanotechnol. 8 180Google Scholar
[57] Engel M, Small J P, Steiner M, Freitag M, Green A A, Hersam M C, Avouris P 2008 ACS Nano 2 2445Google Scholar
[58] Joo Y, Brady G J, Arnold M S, Gopalan P 2014 Langmuir 30 3460Google Scholar
[59] Wu J, Antaris A, Gong M, Dai H 2014 Adv. Mater. 26 6151Google Scholar
[60] Sun W, Shen J, Zhao Z, Arellano N, Rettner C, Tang J, Cao T, Zhou Z, Ta T, Streit J K, Fagan J A, Schaus T, Zheng M, Han S J, Shih W M, Maune H T, Yin P 2020 Science 368 874Google Scholar
[61] Léonard F, Tersoff J 2000 Phys. Rev. Lett. 84 4693Google Scholar
[62] Fediai A, Ryndyk D A, Seifert G, Mothes S, Claus M, Schröter M, Cuniberti G 2016 Nanoscale 8 10240Google Scholar
[63] Zhang Z, Wang S, Wang Z, Ding L, Pei T, Hu Z, Liang X, Chen Q, Li Y, Peng L M 2009 ACS Nano 3 3781Google Scholar
[64] Ding L, Wang S, Zhang Z, Zeng Q, Wang Z, Pei T, Yang L, Liang X, Shen J, Chen Q, Cui R, Li Y, Peng L M 2009 Nano Lett. 9 4209Google Scholar
[65] Ding L, Zhang Z, Liang S, Pei T, Wang S, Li Y, Zhou W, Liu J, Peng L M 2012 Nat. Commun. 3 677Google Scholar
[66] IEEE https://irds.ieee.org/editions/2017 [2021-11-8]
[67] Liu L, Qiu C, Zhong D, Si J, Zhang Z, Peng L M 2017 Nanoscale 9 9615Google Scholar
[68] Cao Q, Han S J, Tersoff J, Franklin A D, Zhu Y, Zhang Z, Tulevski G S, Tang J, Haensch W 2015 Science 350 68Google Scholar
[69] Pitner G, Hills G, Llinas J P, Persson K M, Park R, Bokor J, Mitra S, Wong H S P 2019 Nano Lett. 19 1083Google Scholar
[70] Oh H, Kim J J, Song W, Moon S, Kim N, Kim J, Park N 2006 Appl. Phys. Lett. 88 103503Google Scholar
[71] Kim H S, Kim B K, Kim J J, Lee J O, Park N 2007 Appl. Phys. Lett. 91 153113Google Scholar
[72] Wei H, Chen H Y, Liyanage L, Wong H S P, Mitra S 2011 2011 International Electron Devices Meeting Washington, DC, USA, December 5–7, 2011 p23.2.1
[73] Liyanage L S, Pitner G, Xu X, Wong H S P 2014 Proceedings of Technical Program-2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA) Hsinchu, Taiwan, China, April 28–30, 2014 p1
[74] Moriyama N, Ohno Y, Kitamura T, Kishimoto S, Mizutani T 2010 Nanotechnology 21 165201Google Scholar
[75] Zhang J, Wang C, Fu Y, Che Y, Zhou C 2011 ACS Nano 5 3284Google Scholar
[76] Liang S, Zhang Z, Pei T, Li R, Li Y, Peng L M 2013 Nano Res. 6 535Google Scholar
[77] Hafizi R, Tersoff J, Perebeinos V 2017 Phys. Rev. Lett. 119 207701Google Scholar
[78] Perebeinos V, Tersoff J 2015 Phys. Rev. Lett. 114 085501Google Scholar
[79] Pikus F, Likharev K 1997 Appl. Phys. Lett. 71 3661Google Scholar
[80] Xu L, Yang J, Qiu C, Liu S, Zhou W, Li Q, Shi B, Ma J, Yang C, Lu J, Zhang Z 2021 ACS Appl. Mater. Interfaces 13 31957Google Scholar
[81] Wang N P, Heinze S, Tersoff J 2007 Nano Lett. 7 910Google Scholar
[82] Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758Google Scholar
[83] Franklin A D, Tulevski G S, Han S J, Shahrjerdi D, Cao Q, Chen H Y, Wong H S P, Haensch W 2012 ACS Nano 6 1109Google Scholar
[84] Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H 2002 Nat. Mater. 1 241Google Scholar
[85] Franklin A D, Koswatta S O, Farmer D B, Smith J T, Gignac L, Breslin C M, Han S J, Tulevski G S, Miyazoe H, Haensch W, Tersoff J 2013 Nano Lett. 13 2490Google Scholar
[86] Chen Z, Farmer D, Xu S, Gordon R, Avouris P, Appenzeller J 2008 IEEE Electron Device Lett. 29 183Google Scholar
[87] Kim S, Xuan Y, Ye P, Mohammadi S, Back J, Shim M 2007 Appl. Phys. Lett. 90 163108Google Scholar
[88] Lu Y, Bangsaruntip S, Wang X, Zhang L, Nishi Y, Dai H 2006 J. Am. Chem. Soc. 128 3518Google Scholar
[89] Zhang Z, Wang S, Ding L, Liang X, Xu H, Shen J, Chen Q, Cui R, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117Google Scholar
[90] Franklin A D, Bojarczuk N A, Copel M 2013 Appl. Phys. Lett. 102 013108Google Scholar
[91] Wang Z, Xu H, Zhang Z, Wang S, Ding L, Zeng Q, Yang L, Pei T, Liang X, Gao M, Peng L M 2010 Nano Lett. 10 2024Google Scholar
[92] Ding L, Zhang Z, Su J, Li Q, Peng L M 2014 Nanoscale 6 11316Google Scholar
[93] Xu L, Gao N, Zhang Z, Peng L M 2018 Appl. Phys. Lett. 113 083105Google Scholar
[94] Banerjee S, Hemraj-Benny T, Wong S S 2005 Adv. Mater. 17 17Google Scholar
[95] Li W, Zhou J, Cai S, Yu Z, Zhang J, Fang N, Li T, Wu Y, Chen T, Xie X 2019 Nat. Electron. 2 563Google Scholar
[96] Kemelbay A, Tikhonov A, Aloni S, Kuykendall T R 2019 Nanomaterials 9 1085Google Scholar
[97] Sung D, Hong S, Kim Y H, Park N, Kim S, Maeng S L, Kim K C 2006 Appl. Phys. Lett. 89 243110Google Scholar
[98] Kim W, Javey A, Vermesh O, Wang Q, Li Y, Dai H 2003 Nano Lett. 3 193Google Scholar
[99] Park R S, Shulaker M M, Hills G, Suriyasena Liyanage L, Lee S, Tang A, Mitra S, Wong H S P 2016 ACS Nano 10 4599Google Scholar
[100] Park R S, Hills G, Sohn J, Mitra S, Shulaker M M, Wong H S P 2017 ACS Nano 11 4785Google Scholar
[101] Hu Z, Tulevski G S, Hannon J B, Afzali A, Liehr M, Park H 2015 Appl. Phys. Lett. 106 243106Google Scholar
[102] Cao Q, Han S J, Penumatcha A V, Frank M M, Tulevski G S, Tersoff J, Haensch W E 2015 ACS Nano 9 1936Google Scholar
[103] Cao Q, Tersoff J, Han S J, Penumatcha A V 2015 Phys. Rev. Appl. 4 024022Google Scholar
[104] Zhong D, Zhao C, Liu L, Zhang Z, Peng LM 2018 Appl. Phys. Lett. 112 153109Google Scholar
[105] Qiu C, Zhang Z, Zhong D, Si J, Yang Y, Peng L M 2015 ACS Nano 9 969Google Scholar
[106] Xu L, Qiu C, Peng L M, Zhang Z 2021 Nano Res. 14 976Google Scholar
[107] Liu L, Zhao C, Ding L, Peng L M, Zhang Z 2020 Nano Res. 13 1875Google Scholar
[108] Zhao C, Zhong D, Liu L, Yang Y, Shi H, Peng L M, Zhang Z 2020 ACS Nano 14 15267Google Scholar
[109] Tian B, Liang X, Xia J, Zhang H, Dong G, Huang Q, Peng L, Xie S 2017 Nanoscale 9 4388Google Scholar
[110] Franklin A D, Chen Z 2010 Nat. Nanotechnol. 5 858Google Scholar
[111] Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74Google Scholar
[112] Chen Z, Appenzeller J, Lin Y M, Sippel-Oakley J, Rinzler A G, Tang J, Wind S J, Solomon P M, Avouris P 2006 Science 311 1735Google Scholar
[113] Yang Y, Ding L, Chen H, Han J, Zhang Z, Peng L M 2018 Nano Res. 11 300Google Scholar
[114] Han S J, Tang J, Kumar B, Falk A, Farmer D, Tulevski G, Jenkins K, Afzali A, Oida S, Ott J, Hannon J, Haensch W 2017 Nat. Nanotechnol. 12 861Google Scholar
[115] Bohr M 2007 IEEE Solid-State Circuits Society Newsletter 12 11Google Scholar
[116] Ionescu A M, Riel H 2011 Nature 479 329Google Scholar
[117] Salahuddin S, Datta S 2008 Nano Lett. 8 405Google Scholar
[118] Xiao M, Lin Y, Xu L, Deng B, Peng H, Peng L M, Zhang Z 2020 Adv. Electron. Mater. 6 2000258Google Scholar
[119] Bachtold A, Hadley P, Nakanishi T, Dekker C 2001 Science 294 1317Google Scholar
[120] Cao Q, Kim H S, Pimparkar N, Kulkarni J P, Wang C, Shim M, Roy K, Alam M A, Rogers J A 2008 Nature 454 495Google Scholar
[121] Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S P, Mitra S 2013 Nature 501 526Google Scholar
[122] Hills G, Lau C, Wright A, Fuller S, Bishop M D, Srimani T, Kanhaiya P, Ho R, Amer A, Stein Y, Murphy D, Arvind, Chandrakasan A, Shulaker M M 2019 Nature 572 595Google Scholar
[123] Burke P J 2004 Solid-State Electron. 48 1981Google Scholar
[124] Guo J, Hasan S, Javey A, Bosman G, Lundstrom M 2005 IEEE Trans. Nanotechnol. 4 715Google Scholar
[125] Koswatta S O, Valdes-Garcia A, Steiner M B, Lin Y M, Avouris P 2011 IEEE Trans. Microwave Theory Tech. 59 2739Google Scholar
[126] Baumgardner J E, Pesetski A A, Murduck J M, Przybysz J X, Adam J D, Zhang H 2007 Appl. Phys. Lett. 91 052107Google Scholar
[127] Wang C, Badmaev A, Jooyaie A, Bao M, Wang K L, Galatsis K, Zhou C 2011 ACS Nano 5 4169Google Scholar
[128] Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T 2005 Phys. Rev. Lett. 95 065502Google Scholar
[129] Kelly M 2013 Semicond. Sci. Technol. 28 122001Google Scholar
[130] Bethoux J M, Happy H, Dambrine G, Derycke V, Goffman M, Bourgoin J P 2006 IEEE Electron Device Lett. 27 681Google Scholar
[131] Le Louarn A, Kapche F, Bethoux J M, Happy H, Dambrine G, Derycke V, Chenevier P, Izard N, Goffman M, Bourgoin J P 2007 Appl. Phys. Lett. 90 233108Google Scholar
[132] Nougaret L, Happy H, Dambrine G, Derycke V, Bourgoin J P, Green A, Hersam M 2009 Appl. Phys. Lett. 94 243505Google Scholar
[133] Kocabas C, Dunham S, Cao Q, Cimino K, Ho X, Kim H S, Dawson D, Payne J, Stuenkel M, Zhang H, Banks T, Feng M, Rotkin S V, Rogers J A 2009 Nano Lett. 9 1937Google Scholar
[134] Steiner M, Engel M, Lin Y M, Wu Y, Jenkins K, Farmer D B, Humes J J, Yoder N L, Seo J W T, Green A A, Hersam C M, Krupke R, Avouris P 2012 Appl. Phys. Lett. 101 053123Google Scholar
[135] Che Y, Badmaev A, Jooyaie A, Wu T, Zhang J, Wang C, Galatsis K, Enaya H A, Zhou C 2012 ACS Nano 6 6936Google Scholar
[136] Che Y, Lin Y C, Kim P, Zhou C 2013 ACS Nano 7 4343Google Scholar
[137] Cao Y, Che Y, Gui H, Cao X, Zhou C 2016 Nano Res. 9 363Google Scholar
[138] Cao Y, Che Y, Seo J W T, Gui H, Hersam M C, Zhou C 2016 Appl. Phys. Lett. 108 233105Google Scholar
[139] Cao Y, Brady G J, Gui H, Rutherglen C, Arnold M S, Zhou C 2016 ACS Nano 10 6782Google Scholar
[140] Zhong D, Shi H, Ding L, Zhao C, Liu J, Zhou J, Zhang Z, Peng L M 2019 ACS Appl. Mater. Interfaces 11 42496Google Scholar
[141] Zhou J, Liu L, Shi H, Zhu M, Cheng X, Ren L, Ding L, Peng L M, Zhang Z 2021 ACS Appl. Mater. Interfaces 13 37475Google Scholar
[142] Rutherglen C, Kane A A, Marsh P F, Cain T A, Hassan B I, AlShareef M R, Zhou C, Galatsis K 2019 Nat. Electron. 2 530Google Scholar
[143] Marsh P F, Rutherglen C, Kane A A, Cain T A, Galatsis K, Maas S, AlShareef M R 2019 Microwave J. 62 22
[144] Liu L, Ding L, Zhong D, Han J, Wang S, Meng Q, Qiu C, Zhang X, Peng L M, Zhang Z 2019 ACS Nano 13 2526Google Scholar
[145] Star A, Han T R, Gabriel J C P, Bradley K, Grüner G 2003 Nano Lett. 3 1421Google Scholar
[146] Zhu Z 2017 Nano-Micro Lett. 9 1Google Scholar
[147] Heller I, Janssens A M, Männik J, Minot E D, Lemay S G, Dekker C 2008 Nano Lett. 8 591Google Scholar
[148] Liang Y, Xiao M, Wu D, Lin Y, Liu L, He J, Zhang G, Peng L M, Zhang Z 2020 ACS Nano 14 8866Google Scholar
[149] Xiao M, Liang S, Han J, Zhong D, Liu J, Zhang Z, Peng L 2018 ACS Sens. 3 749Google Scholar
[150] Collins P G, Fuhrer M, Zettl A 2000 Appl. Phys. Lett. 76 894Google Scholar
[151] Tersoff J 2007 Nano Lett. 7 194Google Scholar
[152] Shulaker M M, Wu T F, Pal A, Zhao L, Nishi Y, Saraswat K, Wong H S P, Mitra S 2014 2014 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 15–17, 2014 p27.4.1
[153] Wu T F, Li H, Huang P C, Rahimi A, Hills G, Hodson B, Hwang W, Rabaey J M, Wong H S P, Shulaker M M 2018 IEEE J. Solid-State Circuit 53 3183Google Scholar
[154] Xie Y, Zhang Z 2021 Sci. China Inf. Sci. 64 1Google Scholar
[155] Naeemi A, Meindl J D 2009 Carbon nanotube electronics (Berlin: Springer) pp163–190
[156] Koo K H, Cho H, Kapur P, Saraswat K C 2007 IEEE Trans. Electron Devices 54 3206Google Scholar
[157] Naeemi A, Meindl J D 2008 IEEE Trans. Electron Devices 55 2574Google Scholar
[158] Lu P Y, Yen C M, Chang S Y, Feng Y J, Lien C, Hu C W, Yao C W, Lee M H, Liao M H 2020 2020 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 12–18, 2020 p12.6.1
[159] Zhu M, Zhou J, Sun P, Peng L M, Zhang Z 2021 ACS Appl. Mater. Interfaces 13 47756Google Scholar
[160] Zhu M G, Zhang Z, Peng L M 2019 Adv. Electron. Mater. 5 1900313Google Scholar
[161] Vandersypen L, Van Leeuwenhoek A 2017 IEEE International Solid-State Circuits Conference (ISSCC) San Francisco, CA, USA, February 5–9, 2017 p24
[162] Xie Y, Zhong D, Fan C, Deng X, Peng L M, Zhang Z 2021 Adv. Electron. Mater. 7 2100202Google Scholar
[163] Kim S H, Haines C S, Li N, Kim K J, Mun T J, Choi C, Di J, Oh Y J, Oviedo J P, Bykova J, Fang S, Jiang N, Liu Z, Wang R, Kumar P, Qiao R, Priya S, Cho K, Kim M, Lucas M S, Drummy L F. Maruyama B, Lee D Y, Lepró X, Gao E, Albarq D, Robles R O, Kim S J, Baughman R H 2017 Science 357 773Google Scholar
[164] Tang J, Cao Q, Tulevski G, Jenkins K A, Nela L, Farmer D B, Han S J 2018 Nat. Electron. 1 191Google Scholar
[165] Zhao T Y, Zhang D D, Qu T Y, Fang L L, Zhu Q B, Sun Y, Cai T H, Chen M L, Wang B W, Du J H, Ren W C, Yan X, Li Q W, Qiu S, Sun D M 2019 ACS Appl. Mater. Interfaces 11 11699Google Scholar
[166] Bishop M D, Hills G, Srimani T, Lau C, Murphy D, Fuller S, Humes J, Ratkovich A, Nelson M, Shulaker M M 2020 Nat. Electron. 3 492Google Scholar
计量
- 文章访问数: 22014
- PDF下载量: 1148
- 被引次数: 0