-
采用固相反应法合成了一种ZrCuSiAs型准二维层状锰基化合物ThMnSbN. 基于X射线粉末衍射的结构精修显示, 该化合物属于P4/nmm空间群. 其晶胞参数为a = 4.1731 Å, c = 9.5160 Å. 电输运测量显示, 该化合物电阻率随温度下降缓慢上升, 且在16 K附近出现电阻率异常. 与此同时, 该材料的磁化率在同一温度附近出现异常, 显示出类似磁性相变的行为. 进一步的比热测量中没有观察到磁相变导致的比热异常. 另外, 低温下的比热分析显示, 该材料的电子比热系数为γ = 19.7 mJ·mol–1·K–2, 远高于其他同类锰基化合物. 该结果与电输运测量中观察到的低电阻率行为相符, 暗示ThMnSbN中费米面附近存在可观的电子态密度. 基于对一系列ZrCuSiAs型化合物晶体结构细节的比较, 分析了含有萤石型Th2N2层的系列化合物中导电层所受化学压力的不同作用形式.A quasi-two-dimensional manganese-based compound ThMnSbN is synthesized by the solid-state reaction method. Structural refinement based on X-ray powder diffraction shows that the compound structure belongs to the P4/nmm space group. The lattice parameters are a = 4.1731 Å and c = 9.5160 Å. Electrical transport measurements show that the resistivity of the compound is the lowest in the Mn-based family. When cooling it, its resistivity rises slowly and shows a shoulder-like anomaly at 16 K. Also, the magnetic susceptibility exhibits an anomaly at the very same temperature. Though the specific heat data indicate the inexistence of transition-induced anomaly, the electron specific heat coefficient of γ = 19.7 mJ·mol–1·K–2 is derived by fitting the low-temperature C-T curve. This γ value is much higher than those of the isostructural manganese-based compounds. Thus, the specific heat is consistent with the low resistivity, implying a considerable electronic density of states near the Fermi surface for ThMnSbN. By comparing the crystal structure for a group of ZrCuSiAs-type compounds, various chemical pressure effects of the fluorite-type Th2N2 layer on the conducting layer in different compounds are discussed.
-
Keywords:
- Mn-based compounds /
- crystal structure /
- physical property measurement /
- chemical pressure effects
[1] Tegel M, Schellenberg I, Pöttgen R, Johrendt D 2008 Z. Naturforsch. , B:Chem. Sci. 63 1057Google Scholar
[2] Ozawa T C, Kauzlarich S M 2008 Sci. Technol. Adv. Mater. 9 033003Google Scholar
[3] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar
[4] Wang C, Li L, Chi S, Zhu Z, Ren Z, Li Y, Wang Y, Lin X, Luo Y, Jiang S, Xu X, Cao G, Xu Z A 2008 Europhys. Lett. 83 67006Google Scholar
[5] Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar
[6] Tegel M, Johansson S, Weiß V, Schellenberg I, Hermes W, Pöttgen R, Johrendt D 2008 Europhys. Lett. 84 67007Google Scholar
[7] Cheng P, Shen B, Mu G, Zhu X, Han F, Zeng B, Wen H H 2009 Europhys. Lett. 85 67003Google Scholar
[8] Muraba Y, Matsuishi S, Hosono H 2014 J. Phys. Soc. Jpn. 83 033705Google Scholar
[9] Park S W, Mizoguchi H, Kodama K, Shamoto S, Otomo T, Matsuishi S, Kamiya T, Hosono H 2013 Inorg. Chem. 52 13363Google Scholar
[10] McGuire M A, Garlea V O 2016 Phys. Rev. B 93 054404Google Scholar
[11] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar
[12] Yanagi H, Kawamura R, Kamiya T, Kamihara Y, Hirano M, Nakamura T, Osawa H, Hosono H 2008 Phys. Rev. B 77 224431Google Scholar
[13] Ohta H, Yoshimura K 2009 Phys. Rev. B 80 184409Google Scholar
[14] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 Inorg. Chem. 46 7719Google Scholar
[15] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar
[16] Emery N, Wildman E J, Skakle J M S, McLaughlin A C, Smith R I, Fitch A N 2011 Phys. Rev. B 83 144429Google Scholar
[17] Marcinkova A, Hansen T C, Curfs C, Margadonna S, Bos J W G 2010 Phys. Rev. B 82 174438Google Scholar
[18] Corkett A J, Free D G, Clarke S J 2015 Inorg. Chem. 54 1178Google Scholar
[19] Kimber S A J, Hill A H, Zhang Y Z, et al. 2010 Phys. Rev. B 82 100412Google Scholar
[20] Simonson J W, Yin Z P, Pezzoli M, et al. 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1815Google Scholar
[21] Wang C, Wang Z C, Mei Y X, Li Y K, Li L, Tang Z T, Liu Y, Zhang P, Zhai H F, Xu Z A, Cao G H 2016 J. Am. Chem. Soc. 138 2170Google Scholar
[22] Wang Z C, Shao Y T, Wang C, Wang Z, Xu Z A, Cao G H 2017 Europhys. Lett. 118 57004Google Scholar
[23] Zhang F, Li B, Ren Q, et al. 2020 Inorg. Chem. 59 2937Google Scholar
[24] Zheng L, Chen G, Jing D, Gang L, Luo J 2008 Phys. Rev. B 78 060504Google Scholar
[25] Rodríguez-Carvajal J 1993 Phys. B 192 55Google Scholar
[26] Plokhikh I V, Charkin D O, Verchenko V Y, Kuznetsov A N, Tsirlin A A, Kazakov S M, Shevelkov A V 2018 J. Solid State Chem. 258 682Google Scholar
[27] Sangeetha N S, Smetana V, Mudring A V, Johnston D C 2018 Phys. Rev. B 97 014402Google Scholar
[28] Kimber S, Hill A H, Zhang Y Z, Jeschke H O, Valenti R, Ritter C, Schellenberg I, Hermes W, Poettgen R, Argyriou D N 2010 Physical Review B 82 100412
[29] Gurgul J, Rinke M T, Schellenberg I, Pöttgen R 2013 Solid State Sci. 17 122Google Scholar
[30] Okita T, Makino Y 1968 J. Phys. Soc. Jpn. 25 120Google Scholar
[31] Hanna T, Matsuishi S, Kodama K, Otomo T, Shamoto S I, Hosono H 2013 Phys. Rev. B 87 020401
[32] Wildman E J, Emery N, McLaughlin A C 2014 Phys. Rev. B 90 224413Google Scholar
[33] Wildman E J, Skakle J M S, Emery N, McLaughlin A C 2012 J. Am. Chem. Soc. 134 8766Google Scholar
[34] Kageyama H, Yoshimura K, Kosuge K, Mitamura H, Goto T 1997 J. Phys. Soc. Jpn. 66 1607Google Scholar
[35] Niitaka S, Kageyama H, Yoshimura K, Kosuge K, Kawano S, Aso N, Mitsuda A, Mitamura H, Goto T 2001 J. Phys. Soc. Jpn. 70 1222Google Scholar
[36] Niitaka S, Yoshimura K, Kosuge K, Nishi M, Kakurai K 2001 Phys. Rev. Lett. 87 177202Google Scholar
[37] Hardy V, Lees M R, Maignan A, H bert S, Flahaut D, Martin C, Paul D M 2003 J. Phys. Condens. Matter 15 5737Google Scholar
[38] de la Cruz C, Huang Q, Lynn J W, Li J, Ratcliff W, 2 nd, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P 2008 Nature 453 899Google Scholar
[39] Zhigadlo N D, Katrych S, Weyeneth S, Puzniak P, Moll P W, Bukowski Z, Karpinski J, Keller H, Batlogg B 2010 Phys. Rev. B 82 064517Google Scholar
[40] Nitsche F, Jesche A, Hieckmann E, Doert T, Ruck M 2010 Phys. Rev. B 82 134514Google Scholar
[41] Nientiedt A T, Jeitschko W, Pollmeier P G, Brylak M 1997 Z. Naturforsch. , B:Chem. Sci. 52 560Google Scholar
[42] Muir S, Subramanian M A 2012 Prog. Solid State Chem. 40 41Google Scholar
[43] Schellenberg I, Nilges T, Pöttgen R 2008 Z. Naturforsch. , B:Chem. Sci. 63 834Google Scholar
-
图 2 (a) ThMnSbN样品的电阻率随温度变化曲线. 其中右坐标表示电阻率对温度微分后的结果, T *表示电阻率异常的温度点; (b) 按照阿伦尼乌斯方程绘制的lnρ-T曲线; (c) 按照变程跳跃模型绘制的lnρ-T –1/4曲线
Fig. 2. (a) Electronic resistivity for ThMnSbN polycrystalline sample. The right axis shows the plot of dρ/dT versus T, where T * marks the resistivity anomaly; (b) Arrhenius plot of the lnρ-T data; (c) the plot of lnρ versus T –0.25 according to the three-dimensional Mott variable-range hopping (VRH) mechanism.
图 3 ThMnSbN样品摩尔磁化率随温度的变化曲线. 测量中采用零场冷(ZFC)和场冷(FC)两种测量方式, 施加外磁场的磁感应强度为B = 0.1 T. 插图显示样品在300 K时的磁化曲线
Fig. 3. Temperature dependence of magnetic susceptibility for ThMnSbN sample. Both zero-field cooling (ZFC) and field cooling (FC) were performed in a static field of B = 0.1 T. The inset shows the magnetization curve of the sample at 300 K.
图 4 扣除杂相铁磁信号背景后的磁化率随温度变化规律. 其中红色实线为采用居里-外斯公式χ = χ0+C/(T – θ)拟合150—300 K之间磁化率的结果. 插图显示了样品在不同温度下测量得到的磁化曲线. 通过线性拟合3 × 104—5 × 104 Oe之间的磁化强度得到了本征磁化率χ = dM/dH
Fig. 4. The magnetic susceptibility (χ = dM/dH) after deducting the ferromagnetic background of the impurities by linearly fitting the M-H curve between 3 × 104 and 5 × 104 Oe. The solid red line fits the data between 150 and 300 K using the Curie-Weiss relation χ = χ0 + C/(T – θ). The inset shows the original magnetization curves.
图 5 (a) ThMnAsN样品的比热随温度的变化曲线; (b) ThMnAsN的比热-温度曲线在30 K以下部分的放大图, 其中右纵轴显示了比热对温度的微分随温度的变化曲线; (c) C/T–T 2曲线, 其中红色的直线为参照
Fig. 5. (a) The data of specific heat for the ThMnSbN sample; (b) an enlarged view of the C–T curve below 30 K, in which the right vertical axis shows the differential of specific heat as a function of temperature; (c) C/T–T 2 curve, where the red straight line fits the data in the range of 6 K<T<15 K.
图 6 (a), (b) 含有不同载流子库层的ZrCuSiAs型锰基化合物归一化晶胞参数; (c) 不同导电层的ZrCuSiAs型系列化合物中Pn原子的高度(HPn)与晶胞a轴的关系. 其中Vlayer表示一个惯用晶胞中导电层所占据的体积[20,21,23,26,28,38-43]
Fig. 6. (a), (b) The normalized cell parameters of ZrCuSiAs-type manganese-based compounds with different conducting layers; (c) the relationship between the height of the Pn atom (HPn) and the a-axis for ZrCuSiAs-type compounds, where Vlayer represents the volume of the conducting layer in a conventional cell[20,21,23,26,28,38-43].
表 1 室温下ThMnSbN多晶X射线衍射谱的Rietveld精修结果. 其中HSb表示Sb原子与Fe平面的垂直间距
Table 1. Structural data for ThMnSbN at room-temperature, where HSb represents the distance from Sb atom to the Fe plane
Compounds ThMnSbN Space group P4/nmm a/Å 4.1731 c/Å 9.5160 Rp/% 5.71 Rwp/% 7.48 Re/% 6.16 χ2 1.475 HSb/Å 1.7467 Sb-Mn-Sb angle 100.13° Atoms Wyckoff x y z Biso Occupancy Th 2c 0.25 0.25 0.11692 0.17287 1.0054 Mn 2b 0.75 0.25 0.5 0.82783 0.9946 Sb 2c 0.25 0.25 0.68356 0.22882 0.9921 N 2a 0.75 0.25 0 1.0 (fixed) 1.0 (fixed) 表 2 ThMnPnN系列化合物中电子比热系数γ、泡利顺磁磁化率χP以及居里-外斯拟合所得磁化率中的温度无关项χ0的对比
Table 2. Comparison of the Sommerfeld coefficient γ, Pauli paramagnetic susceptibility χP and the temperature-independent term χ0 in the magnetic susceptibility obtained by the Curie-Weiss fitting in ThMnPnN compounds.
-
[1] Tegel M, Schellenberg I, Pöttgen R, Johrendt D 2008 Z. Naturforsch. , B:Chem. Sci. 63 1057Google Scholar
[2] Ozawa T C, Kauzlarich S M 2008 Sci. Technol. Adv. Mater. 9 033003Google Scholar
[3] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar
[4] Wang C, Li L, Chi S, Zhu Z, Ren Z, Li Y, Wang Y, Lin X, Luo Y, Jiang S, Xu X, Cao G, Xu Z A 2008 Europhys. Lett. 83 67006Google Scholar
[5] Ren Z A, Che G C, Dong X L, Yang J, Lu W, Yi W, Shen X L, Li Z C, Sun L L, Zhou F, Zhao Z X 2008 Europhys. Lett. 83 17002Google Scholar
[6] Tegel M, Johansson S, Weiß V, Schellenberg I, Hermes W, Pöttgen R, Johrendt D 2008 Europhys. Lett. 84 67007Google Scholar
[7] Cheng P, Shen B, Mu G, Zhu X, Han F, Zeng B, Wen H H 2009 Europhys. Lett. 85 67003Google Scholar
[8] Muraba Y, Matsuishi S, Hosono H 2014 J. Phys. Soc. Jpn. 83 033705Google Scholar
[9] Park S W, Mizoguchi H, Kodama K, Shamoto S, Otomo T, Matsuishi S, Kamiya T, Hosono H 2013 Inorg. Chem. 52 13363Google Scholar
[10] McGuire M A, Garlea V O 2016 Phys. Rev. B 93 054404Google Scholar
[11] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar
[12] Yanagi H, Kawamura R, Kamiya T, Kamihara Y, Hirano M, Nakamura T, Osawa H, Hosono H 2008 Phys. Rev. B 77 224431Google Scholar
[13] Ohta H, Yoshimura K 2009 Phys. Rev. B 80 184409Google Scholar
[14] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 Inorg. Chem. 46 7719Google Scholar
[15] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar
[16] Emery N, Wildman E J, Skakle J M S, McLaughlin A C, Smith R I, Fitch A N 2011 Phys. Rev. B 83 144429Google Scholar
[17] Marcinkova A, Hansen T C, Curfs C, Margadonna S, Bos J W G 2010 Phys. Rev. B 82 174438Google Scholar
[18] Corkett A J, Free D G, Clarke S J 2015 Inorg. Chem. 54 1178Google Scholar
[19] Kimber S A J, Hill A H, Zhang Y Z, et al. 2010 Phys. Rev. B 82 100412Google Scholar
[20] Simonson J W, Yin Z P, Pezzoli M, et al. 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1815Google Scholar
[21] Wang C, Wang Z C, Mei Y X, Li Y K, Li L, Tang Z T, Liu Y, Zhang P, Zhai H F, Xu Z A, Cao G H 2016 J. Am. Chem. Soc. 138 2170Google Scholar
[22] Wang Z C, Shao Y T, Wang C, Wang Z, Xu Z A, Cao G H 2017 Europhys. Lett. 118 57004Google Scholar
[23] Zhang F, Li B, Ren Q, et al. 2020 Inorg. Chem. 59 2937Google Scholar
[24] Zheng L, Chen G, Jing D, Gang L, Luo J 2008 Phys. Rev. B 78 060504Google Scholar
[25] Rodríguez-Carvajal J 1993 Phys. B 192 55Google Scholar
[26] Plokhikh I V, Charkin D O, Verchenko V Y, Kuznetsov A N, Tsirlin A A, Kazakov S M, Shevelkov A V 2018 J. Solid State Chem. 258 682Google Scholar
[27] Sangeetha N S, Smetana V, Mudring A V, Johnston D C 2018 Phys. Rev. B 97 014402Google Scholar
[28] Kimber S, Hill A H, Zhang Y Z, Jeschke H O, Valenti R, Ritter C, Schellenberg I, Hermes W, Poettgen R, Argyriou D N 2010 Physical Review B 82 100412
[29] Gurgul J, Rinke M T, Schellenberg I, Pöttgen R 2013 Solid State Sci. 17 122Google Scholar
[30] Okita T, Makino Y 1968 J. Phys. Soc. Jpn. 25 120Google Scholar
[31] Hanna T, Matsuishi S, Kodama K, Otomo T, Shamoto S I, Hosono H 2013 Phys. Rev. B 87 020401
[32] Wildman E J, Emery N, McLaughlin A C 2014 Phys. Rev. B 90 224413Google Scholar
[33] Wildman E J, Skakle J M S, Emery N, McLaughlin A C 2012 J. Am. Chem. Soc. 134 8766Google Scholar
[34] Kageyama H, Yoshimura K, Kosuge K, Mitamura H, Goto T 1997 J. Phys. Soc. Jpn. 66 1607Google Scholar
[35] Niitaka S, Kageyama H, Yoshimura K, Kosuge K, Kawano S, Aso N, Mitsuda A, Mitamura H, Goto T 2001 J. Phys. Soc. Jpn. 70 1222Google Scholar
[36] Niitaka S, Yoshimura K, Kosuge K, Nishi M, Kakurai K 2001 Phys. Rev. Lett. 87 177202Google Scholar
[37] Hardy V, Lees M R, Maignan A, H bert S, Flahaut D, Martin C, Paul D M 2003 J. Phys. Condens. Matter 15 5737Google Scholar
[38] de la Cruz C, Huang Q, Lynn J W, Li J, Ratcliff W, 2 nd, Zarestky J L, Mook H A, Chen G F, Luo J L, Wang N L, Dai P 2008 Nature 453 899Google Scholar
[39] Zhigadlo N D, Katrych S, Weyeneth S, Puzniak P, Moll P W, Bukowski Z, Karpinski J, Keller H, Batlogg B 2010 Phys. Rev. B 82 064517Google Scholar
[40] Nitsche F, Jesche A, Hieckmann E, Doert T, Ruck M 2010 Phys. Rev. B 82 134514Google Scholar
[41] Nientiedt A T, Jeitschko W, Pollmeier P G, Brylak M 1997 Z. Naturforsch. , B:Chem. Sci. 52 560Google Scholar
[42] Muir S, Subramanian M A 2012 Prog. Solid State Chem. 40 41Google Scholar
[43] Schellenberg I, Nilges T, Pöttgen R 2008 Z. Naturforsch. , B:Chem. Sci. 63 834Google Scholar
计量
- 文章访问数: 4637
- PDF下载量: 94
- 被引次数: 0