-
基于广义Zakharov模型, 结合斜入射等离子体的时域有限差分(FDTD)方法与双流体力学方程, 通过由二维麦克斯韦方程等价转换的一维麦克斯韦方程, 与等离子体流体力学方程建立了一个电磁波以不同角度入射电离层传播的数值模型. 分析推导出
$\mathrm{T}{\mathrm{E}}_{{z}}$ 波在斜入射非线性电离层等离子体的支配方程, 然后推导了适用于计算电离层电磁波传播特性的FDTD算法. 通过仿真来证明该方法在较小倾角下, 电磁波对电离层加热形成Langmuir扰动及其传播特性的准确性和有效性. 结果表明, 在小角度入射下, 大功率高频电磁波在电离层等离子体中的O波反射点附近激发出了Langmuir波, 同时波粒相互作用导致O波转换为Z波并向电离层更高区域传播. 本文进一步研究了基于电离层等离子体的电磁波传播特性, 为全面深入分析电离层Langmuir扰动对电离层电波传播特性影响奠定数值算法的基础.-
关键词:
- 时域有限差分方法 /
- Zakharov方程 /
- 斜入射 /
- Langmuir扰动
Based on the generalized Zakharov model, a numerical model of electromagnetic wave propagating in the ionosphere at different angles is established by combining the finite difference time domain (FDTD) method of obliquely incident plasma with the double hydrodynamics equation and through equivalently transforming the two-dimensional Maxwell equation into one-dimensional Maxwell equation and the plasma hydrodynamics equation. In this paper. the dominant equation of Z-wave in obliquely incident nonlinear ionospheric plasma having been analyzed and deduced, the FDTD algorithm suitable for calculating the propagation characteristics of ionospheric electromagnetic wave is deduced. The simulation results prove the accuracy and effectiveness of this method for the Langmuir disturbance caused by electromagnetic wave heating the ionosphere at a small inclination angle. The results show that under small angle incidence, the high-power high-frequency electromagnetic wave excites the Langmuir wave near the O-wave reflection point in the ionospheric plasma. At the same time, the wave particle interaction causes the O-wave to convert into Z-wave and propagate into the higher region of the ionosphere. In this work, the electromagnetic wave propagation characteristics are further studied based on ionospheric plasma, which is helpful in laying the foundation of numerical algorithm for comprehensively and in depth analyzing the influence of ionospheric Langmuir disturbance on ionospheric radio wave propagation characteristics.-
Keywords:
- finite difference time domain method /
- Zakharov equation /
- oblique incidence /
- Langmuir disturbance
[1] Perkins F W, Kaw P K 1971 J. Geophys. Res. 761 282
[2] Gurevich A V, Carlson H C, Medvedev Y V, Zybin K P 2004 J. Plasma Phys. Res. 30 995Google Scholar
[3] Cannon P D, Honary F, Borisov N 2016 J. Geophys. Res. Space. Phys. 121 2755Google Scholar
[4] Close R A, Bauer B S, Wong A Y, Langdon A B, Kruer W L, Mjølhus E 1990 Radio Sci. 25 1341Google Scholar
[5] Eliasson B, Papadopoulos K 2016 J. Geophys. Res. Space Phys. 121 2727Google Scholar
[6] Newman D L, Winglee R M, Robinson P A, Glanz J, Goldman M V 1990 Phys. Fluids B 2 2600Google Scholar
[7] Rietveld M T, Isham B, Grydeland T, Hoz C L, Hagfors T 2002 Adv. Space Res. 29 1363Google Scholar
[8] Eliasson B, Thidé B 2008 J. Geophys. Res. 113 A02313
[9] Eliasson B, Stenflo L 2013 Mod. Phys. Lett. B 27 1330005
[10] Mjølhus E, Hanssen A, DuBois D F 1995 J. Geophys. Res. 100 17527Google Scholar
[11] Eliasson B, Thidé B 2007 J. Geophys. Res. Lett. 34 L06106
[12] Eliasson B, Shao X, Milikh G, Mishin E V, Papadopoulos K 2012 J. Geophys. Res. Space Phys. 117 A10321
[13] 刘默然, 周晨, 赵正予, 张援农 2016 电波科学学报 31 743Google Scholar
Liu M R, Zhou C, Zhao Z Y, Zhang Y N 2016 Chin. J. Radio 31 743Google Scholar
[14] 何昉, 赵正予, 倪彬彬, 张援农 2016 电波科学学报 21 525Google Scholar
He F, Zhao Z Y, Ni B B, Zhang Y N 2016 Chin. J. Radio 21 525Google Scholar
[15] Zhu T 2018 M. S. Thesis (Zhenjiang: Jiangsu University) (in Chinese)
[16] Eliasson B, Milikh G, Shao X, Mishin E V, Papadopoulos K 2015 J. Plasma Phys. 81 415810201Google Scholar
[17] Zhang Y 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[18] 樊永永 2013 硕士学位论文 (西安: 西安电子科技大学)
Fan Y Y 2013 M. S. Thesie (Xi’an: Xidian University) (in Chinese)
[19] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 59 6089Google Scholar
Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys, Sin. 59 6089Google Scholar
[20] Taflove A, Hagness S C, Piket-May M 2005 Computational Electrodynamics: the Finite-difference Time-domain Method (Academic Press) pp629–669
[21] Mjølhus E, Helmersen E, DuBois D F 2003 Nonlinear Processes Geophys. 10 151Google Scholar
[22] Robinson T R 1989 Phys. Res. 179 153
[23] Mishin E, Hagfors T, Kofman W 1997 J. Geophys. Res. Space Phys. 102 27265Google Scholar
[24] Gondarenko N A, Guzdar P N, Ossakow S L, Bernhardt P A 2003 J. Geophys. Res. Space Phys. 108 1470Google Scholar
[25] Gondarenko N A, Ossakow S L, Milikh G M 2006 Geophys. Res. Lett. 33 399
[26] 葛德彪, 闫玉波 2011 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第42—46页
Ge D B, Yan Y B 2011 The Finite-Difference Time-Domain Method (Xi’an: Xidian University Press) pp42–46 (in Chinese)
[27] 李定 2006 等离子体物理学 (北京: 高等教育出版社) 第88页
Li D 2006 Plasma Physics (Beijing: Higher Education Press) p88 (in Chinese)
[28] Benson R F, Webb P A, Green J L, Carpenter D L, Sonwalkar V S, James H G, Reinisch B W 2006 Ringberg Workshop on High Frequency Waves in Geospace, Ringberg, Germany, July 11–14, 2004 p687
[29] Zhang J, Hai Y F, Wayne S 2018 IEEE Trans. Plasma Sci. 46 2146Google Scholar
[30] Chen J, Yan Y B, Li Q L, Yuan G, Li H Y, Hao S J, Che H Q 2018 12 th International Symposium on Antennas, Propagation and Electromagnetic Theory (ISAPE) Hangzhou, China, December 3–6, 2018 p650
-
图 11 O波转换区域的静电扰动及
$ {{n}_{\text{s}}} $ 扰动 (a) O波转换区域${\text{|}}{{E}_{z}}{\text{|}}$ 变化; (b) O波转换区域${\text{|}}{{n}_{\text{s}}}{\text{|}}$ 变化; (c) Z波转换区域${\text{|}}{{E}_{z}}{\text{|}}$ 变化; (d) Z波转换区域${\text{|}}{{n}_{\text{s}}}{\text{|}}$ 变化Fig. 11. Electrostatic disturbance and
$ {{n}_{\text{s}}} $ disturbance in O-wave conversion region: (a) Variation of O-wave conversion region with respect to${\text{|}}{{E}_{z}}{\text{|}}$ ; (b) variation of O-wave conversion region with respect to${\text{|}}{{n}_{\text{s}}}{\text{|}}$ ; (c) variation of Z-wave conversion region with respect to${\text{|}}{{E}_{z}}{\text{|}}$ ; (d) variation of Z-wave conversion region with respect to${\text{|}}{{n}_{\text{s}}}{\text{|}}$ . -
[1] Perkins F W, Kaw P K 1971 J. Geophys. Res. 761 282
[2] Gurevich A V, Carlson H C, Medvedev Y V, Zybin K P 2004 J. Plasma Phys. Res. 30 995Google Scholar
[3] Cannon P D, Honary F, Borisov N 2016 J. Geophys. Res. Space. Phys. 121 2755Google Scholar
[4] Close R A, Bauer B S, Wong A Y, Langdon A B, Kruer W L, Mjølhus E 1990 Radio Sci. 25 1341Google Scholar
[5] Eliasson B, Papadopoulos K 2016 J. Geophys. Res. Space Phys. 121 2727Google Scholar
[6] Newman D L, Winglee R M, Robinson P A, Glanz J, Goldman M V 1990 Phys. Fluids B 2 2600Google Scholar
[7] Rietveld M T, Isham B, Grydeland T, Hoz C L, Hagfors T 2002 Adv. Space Res. 29 1363Google Scholar
[8] Eliasson B, Thidé B 2008 J. Geophys. Res. 113 A02313
[9] Eliasson B, Stenflo L 2013 Mod. Phys. Lett. B 27 1330005
[10] Mjølhus E, Hanssen A, DuBois D F 1995 J. Geophys. Res. 100 17527Google Scholar
[11] Eliasson B, Thidé B 2007 J. Geophys. Res. Lett. 34 L06106
[12] Eliasson B, Shao X, Milikh G, Mishin E V, Papadopoulos K 2012 J. Geophys. Res. Space Phys. 117 A10321
[13] 刘默然, 周晨, 赵正予, 张援农 2016 电波科学学报 31 743Google Scholar
Liu M R, Zhou C, Zhao Z Y, Zhang Y N 2016 Chin. J. Radio 31 743Google Scholar
[14] 何昉, 赵正予, 倪彬彬, 张援农 2016 电波科学学报 21 525Google Scholar
He F, Zhao Z Y, Ni B B, Zhang Y N 2016 Chin. J. Radio 21 525Google Scholar
[15] Zhu T 2018 M. S. Thesis (Zhenjiang: Jiangsu University) (in Chinese)
[16] Eliasson B, Milikh G, Shao X, Mishin E V, Papadopoulos K 2015 J. Plasma Phys. 81 415810201Google Scholar
[17] Zhang Y 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[18] 樊永永 2013 硕士学位论文 (西安: 西安电子科技大学)
Fan Y Y 2013 M. S. Thesie (Xi’an: Xidian University) (in Chinese)
[19] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 59 6089Google Scholar
Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys, Sin. 59 6089Google Scholar
[20] Taflove A, Hagness S C, Piket-May M 2005 Computational Electrodynamics: the Finite-difference Time-domain Method (Academic Press) pp629–669
[21] Mjølhus E, Helmersen E, DuBois D F 2003 Nonlinear Processes Geophys. 10 151Google Scholar
[22] Robinson T R 1989 Phys. Res. 179 153
[23] Mishin E, Hagfors T, Kofman W 1997 J. Geophys. Res. Space Phys. 102 27265Google Scholar
[24] Gondarenko N A, Guzdar P N, Ossakow S L, Bernhardt P A 2003 J. Geophys. Res. Space Phys. 108 1470Google Scholar
[25] Gondarenko N A, Ossakow S L, Milikh G M 2006 Geophys. Res. Lett. 33 399
[26] 葛德彪, 闫玉波 2011 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第42—46页
Ge D B, Yan Y B 2011 The Finite-Difference Time-Domain Method (Xi’an: Xidian University Press) pp42–46 (in Chinese)
[27] 李定 2006 等离子体物理学 (北京: 高等教育出版社) 第88页
Li D 2006 Plasma Physics (Beijing: Higher Education Press) p88 (in Chinese)
[28] Benson R F, Webb P A, Green J L, Carpenter D L, Sonwalkar V S, James H G, Reinisch B W 2006 Ringberg Workshop on High Frequency Waves in Geospace, Ringberg, Germany, July 11–14, 2004 p687
[29] Zhang J, Hai Y F, Wayne S 2018 IEEE Trans. Plasma Sci. 46 2146Google Scholar
[30] Chen J, Yan Y B, Li Q L, Yuan G, Li H Y, Hao S J, Che H Q 2018 12 th International Symposium on Antennas, Propagation and Electromagnetic Theory (ISAPE) Hangzhou, China, December 3–6, 2018 p650
计量
- 文章访问数: 4365
- PDF下载量: 74
- 被引次数: 0