搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空谱干涉扫描法测量超宽带激光时空耦合特性

李伟 王逍 母杰 胡必龙 曾小明 左言磊 吴朝辉 王晓东 李钊历 粟敬钦

引用本文:
Citation:

基于空谱干涉扫描法测量超宽带激光时空耦合特性

李伟, 王逍, 母杰, 胡必龙, 曾小明, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦

Measurement of spatiotemporal coupling characteristics of ultra broadband pulsed laser beam based on spatial spectrum interferometric scanning

Li Wei, Wang Xiao, Mu Jie, Hu Bi-Long, Zeng Xiao-Ming, Zuo Yan-Lei, Wu Zhao-Hui, Wang Xiao-Dong, Li Zhao-Li, Su Jing-Qin
PDF
HTML
导出引用
  • 大口径超高峰值功率激光装置中展宽器、压缩器、透镜等光学元件会导致不同空间位置的脉冲波形及延时各有不同, 称为“时空耦合效应”. 常规的测量手段仅能反映激光近场的局部时间特性, 本文设计并验证了一种基于空谱干涉线扫描的时空特性测试方案: 采用空谱干涉方法单次测量可获得一个空间维度上的时空耦合特性, 通过沿另一空间维度扫描, 即可获得完整的近场时空耦合特征. 利用该方法实验测量了劈板引入的角色散以及近场不同空间位置处的脉冲波形、脉冲前沿、脉冲宽度等信息, 与理论计算结果符合得较好, 说明该方法能够有效地测量超宽带激光的时空耦合特性.
    Optical elements such as stretcher, compressor and thick lenses will lead to spatially-dependent temporal properties of a large aperture laser pulse, which is called spatiotemporal coupling (STC). Beyond pure temporal characterization measurement, a measure of spatiotemporal coupling distortion based on spatial-spectral interference is proposed in this study. Full one-dimensional spatiotemporal coupling characteristics can be obtained in a single-shot measurement, and the complete spatiotemporal coupling characteristics in the near field can be obtained by scanning along another spatial dimension. The spatiotemporal coupling characteristics introduced by the wedge glasses are measured, and the experimental results accord well with the theoretical results.
      通信作者: 王逍, wangxiaocn@263.net
    • 基金项目: 等离子体物理重点实验室自主科研项目(批准号: JCKYS2018212024)资助的课题
      Corresponding author: Wang Xiao, wangxiaocn@263.net
    • Funds: Project supported by the Science and Technology Research Project on Plasma Physics Laboratory Independent, China (Grant No. JCKYS2018212024)
    [1]

    Trebino R, Kane D J 1993 Opt. Soc. Am. A 10 1101Google Scholar

    [2]

    Li Y Y, Chen Y, Li W K, Wang P F, Shao B J, Peng Y J, Leng Y X 2019 Opt. Laser Technol. 120 105671Google Scholar

    [3]

    Iaconis C, Walmsley I A 1998 Opt. Lett. 23 792Google Scholar

    [4]

    Radunsky A S, Walmsley I A, Gorza S P, Wasylczyk P 2007 Opt. Lett. 32 181Google Scholar

    [5]

    Oksenhendler T, Coudreau S, Forget N, Grabielle S, Kaplan D, Gobret O 2010 Appl. Phys. B 99 7

    [6]

    Trisorio A, Grabielle S, Divall M, Forget N, Hauri C P 2012 Opt. Lett. 37 2892Google Scholar

    [7]

    Miranda M, Fordell T, Arnold C, Huillier A L, Crespo H 2012 Opt. Express 20 688Google Scholar

    [8]

    Loriot V, Gitzinger G, Forget N 2013 Opt. Express 21 24879Google Scholar

    [9]

    Walowicz K A, Pastirk I, Lozovoy V V, Dantus M 2002 J. Phys. Chem. A 106 9369Google Scholar

    [10]

    赵冠凯, 刘军, 李儒新 2014 63 164207Google Scholar

    Zhao G K, Liu J, Li R X 2014 Acta Phys. Sin. 63 164207Google Scholar

    [11]

    左言磊, 曾小明, 黄小军, 赵磊, 王逍, 周凯南, 张颖, 黄征 2009 58 8264Google Scholar

    Zuo Y L, Zeng X M, Huang X J, Zhao L, Wang X, Zhou K N, Zhang Y, Huang Z 2009 Acta Phys. Sin. 58 8264Google Scholar

    [12]

    Jolly S W, Gobert O, Quéré F 2020 J. Opt. 22 103501Google Scholar

    [13]

    Dorrer C 2019 IEEE J. Quantum. Electron. 25 3100216Google Scholar

    [14]

    Li Z Y, Ogino J, Tokita S, Kawanaka J 2019 Opt. Express 27 13292Google Scholar

    [15]

    Pariente G, Gallet V, Borot A, Gobert O, Quéré F 2016 Nat. Photonics 10 547Google Scholar

    [16]

    Gabolde P, Trebino R 2008 Opt. Soc. Am. B 25 A25Google Scholar

    [17]

    Dorrer C, Bahk S W 2018 Opt. Express 26 33387Google Scholar

    [18]

    Meshulach D, Yelin D, Silberberg Y 1997 Opt. Soc. Am. B 14 2095Google Scholar

    [19]

    赵丹, 王逍, 母杰, 左言磊, 周松, 周凯南, 曾小明, 李志林, 粟敬钦, 朱启华 2017 66 024201Google Scholar

    Zhao D, Wang X, Mu J, Zuo Y L, Zhou S, Zhou K N, Zeng X M, Li Z L, Su J Q, Zhu Q H 2017 Acta Phys. Sin. 66 024201Google Scholar

    [20]

    母杰, 王逍, 左言磊, 胡必龙, 李伟, 曾小明, 周凯南, 王晓东, 孙立, 吴朝辉, 粟敬钦 2020 中国激光 47 0401003Google Scholar

    Mu J, Wang X, Zuo Y L, Hu B L, Li W, Zeng X M, Zhou K N, Wang X D, Sun L, Wu Z H, Su J Q 2020 Chin. J. Lasers 47 0401003Google Scholar

    [21]

    Bowlan P, Gabolde P, Trebino R 2007 Opt. Express 15 10219Google Scholar

  • 图 1  实验平台光路示意图

    Fig. 1.  Schematic of the experimental light path.

    图 2  干涉条纹图

    Fig. 2.  Interference fringes.

    图 3  谱相位提取过程 (a) 干涉条纹频域图像; (b) 频域带通滤波器; (c) 频域滤波后干涉条纹图; (d) 二值化干涉条纹图; (e) 细化图像, 提取干涉条纹中心; (f) 干涉条纹级次标记; (g) 谱相位图; (h)去除线性项后的谱相位图

    Fig. 3.  Spectral phase recovery process: (a) Frequency domain image; (b) frequency domain bandpass filter; (c) filtered image; (d) binary image; (e) thinning image and identify the center of the stripe; (f) labeled the order of stripes; (g) spectral phase; (h) spectral phase (remove the linear terms).

    图 4  劈板引入角色散图 (a) 1号劈板引入角色散; (b) 2号劈板引入角色散

    Fig. 4.  Angular dispersion caused by wedged glass: (a) Angular dispersion caused by wedged glass No.1; (b) angular dispersion caused by wedged glass No.2.

    图 5  加入1号劈板单次采样 (a) 谱相位信息模拟计算结果; (b) 时空耦合特性模拟计算结果; (c) 谱相位信息测量结果; (d) 时空耦合特性测量结果

    Fig. 5.  Single sampling results (insert WG1): (a) Spectral phase simulation results; (b) spatiotemporal coupling characteristics simulation results; (c) spectral phase measurement results; (d) spatiotemporal coupling characteristics measurement results.

    图 6  加入1号劈板近场时空特性 (a) 近场光斑模拟结果; (b) 近场脉冲前沿模拟结果; (c) 近场脉冲宽度模拟结果; (d) 近场光斑测量结果; (e) 近场脉冲前沿测量结果; (f) 近场脉冲宽度测量结果

    Fig. 6.  Near-field spatiotemporal characteristics (insert WG1): (a) Near field intensity simulation results; (b) near field pulse front simulation results; (c) near field pulse width simulation results; (d) near field intensity measurement results; (e) near field pulse front measurement results; (f) near field pulse width measurement results.

    图 7  加入2号劈板单次采样 (a) 谱相位信息模拟计算结果; (b) 时空耦合特性模拟计算结果; (c) 谱相位信息测量结果; (d) 时空耦合特性测量结果

    Fig. 7.  Single sampling results (insert WG2): (a) Spectral phase simulation results; (b) spatiotemporal coupling characteristics simulation results; (c) spectral phase measurement results; (d) spatiotemporal coupling characteristics measurement results.

    图 8  加入2号劈板近场时空特性 (a) 近场光斑模拟结果; (b) 近场脉冲前沿模拟结果; (c) 近场脉冲宽度模拟结果; (d) 近场光斑测量结果; (e) 近场脉冲前沿测量结果; (f) 近场脉冲宽度测量结果

    Fig. 8.  Near-field spatiotemporal characteristics (insert WG1): (a) Near field intensity simulation results; (b) near field pulse front simulation results; (c) near field pulse width simulation results; (d) near field intensity measurement results; (e) near field pulse front measurement results; (f) near field pulse width measurement results.

    Baidu
  • [1]

    Trebino R, Kane D J 1993 Opt. Soc. Am. A 10 1101Google Scholar

    [2]

    Li Y Y, Chen Y, Li W K, Wang P F, Shao B J, Peng Y J, Leng Y X 2019 Opt. Laser Technol. 120 105671Google Scholar

    [3]

    Iaconis C, Walmsley I A 1998 Opt. Lett. 23 792Google Scholar

    [4]

    Radunsky A S, Walmsley I A, Gorza S P, Wasylczyk P 2007 Opt. Lett. 32 181Google Scholar

    [5]

    Oksenhendler T, Coudreau S, Forget N, Grabielle S, Kaplan D, Gobret O 2010 Appl. Phys. B 99 7

    [6]

    Trisorio A, Grabielle S, Divall M, Forget N, Hauri C P 2012 Opt. Lett. 37 2892Google Scholar

    [7]

    Miranda M, Fordell T, Arnold C, Huillier A L, Crespo H 2012 Opt. Express 20 688Google Scholar

    [8]

    Loriot V, Gitzinger G, Forget N 2013 Opt. Express 21 24879Google Scholar

    [9]

    Walowicz K A, Pastirk I, Lozovoy V V, Dantus M 2002 J. Phys. Chem. A 106 9369Google Scholar

    [10]

    赵冠凯, 刘军, 李儒新 2014 63 164207Google Scholar

    Zhao G K, Liu J, Li R X 2014 Acta Phys. Sin. 63 164207Google Scholar

    [11]

    左言磊, 曾小明, 黄小军, 赵磊, 王逍, 周凯南, 张颖, 黄征 2009 58 8264Google Scholar

    Zuo Y L, Zeng X M, Huang X J, Zhao L, Wang X, Zhou K N, Zhang Y, Huang Z 2009 Acta Phys. Sin. 58 8264Google Scholar

    [12]

    Jolly S W, Gobert O, Quéré F 2020 J. Opt. 22 103501Google Scholar

    [13]

    Dorrer C 2019 IEEE J. Quantum. Electron. 25 3100216Google Scholar

    [14]

    Li Z Y, Ogino J, Tokita S, Kawanaka J 2019 Opt. Express 27 13292Google Scholar

    [15]

    Pariente G, Gallet V, Borot A, Gobert O, Quéré F 2016 Nat. Photonics 10 547Google Scholar

    [16]

    Gabolde P, Trebino R 2008 Opt. Soc. Am. B 25 A25Google Scholar

    [17]

    Dorrer C, Bahk S W 2018 Opt. Express 26 33387Google Scholar

    [18]

    Meshulach D, Yelin D, Silberberg Y 1997 Opt. Soc. Am. B 14 2095Google Scholar

    [19]

    赵丹, 王逍, 母杰, 左言磊, 周松, 周凯南, 曾小明, 李志林, 粟敬钦, 朱启华 2017 66 024201Google Scholar

    Zhao D, Wang X, Mu J, Zuo Y L, Zhou S, Zhou K N, Zeng X M, Li Z L, Su J Q, Zhu Q H 2017 Acta Phys. Sin. 66 024201Google Scholar

    [20]

    母杰, 王逍, 左言磊, 胡必龙, 李伟, 曾小明, 周凯南, 王晓东, 孙立, 吴朝辉, 粟敬钦 2020 中国激光 47 0401003Google Scholar

    Mu J, Wang X, Zuo Y L, Hu B L, Li W, Zeng X M, Zhou K N, Wang X D, Sun L, Wu Z H, Su J Q 2020 Chin. J. Lasers 47 0401003Google Scholar

    [21]

    Bowlan P, Gabolde P, Trebino R 2007 Opt. Express 15 10219Google Scholar

计量
  • 文章访问数:  5214
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-26
  • 修回日期:  2021-07-06
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回
Baidu
map