搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Duffing系统的主-超谐联合共振

李航 申永军 杨绍普 彭孟菲 韩彦军

引用本文:
Citation:

Duffing系统的主-超谐联合共振

李航, 申永军, 杨绍普, 彭孟菲, 韩彦军

Simultaneous primary and super-harmonic resonance of Duffing oscillator

Li Hang, Shen Yong-Jun, Yang Shao-Pu, Peng Meng-Fei, Han Yan-Jun
PDF
HTML
导出引用
  • 非线性动力系统极易发生共振, 在多频激励下可能发生联合共振或组合共振, 目前关于非线性系统的主-超谐联合共振的研究少见报道. 本文以Duffing系统为对象, 研究系统在主-超谐联合共振时的周期运动和通往混沌的道路. 应用多尺度法得到系统的近似解析解, 并利用数值方法对解析解进行验证, 结果吻合良好. 基于Lyapunov第一方法得到稳态周期解的稳定性条件, 并分析了非线性刚度对稳态周期解的幅值和稳定性的影响. 此外, 由于近似解只能描述周期运动, 不足以描述系统的全局特性, 因而应用Melnikov方法对系统进行全局分析, 得到系统进入Smale马蹄意义下混沌的条件, 依据该条件以及主-超谐联合共振的条件选取一组参数进行数值仿真. 分岔图和最大Lyapunov指数显示出两个临界值: 当激励幅值通过第一个临界值时, 异宿轨道破裂, 混沌吸引子突然出现, 系统以激变方式进入混沌; 激励幅值通过第二个临界值时, 系统在混沌态下再次发生激变, 进入另一种混沌态. 利用Melnikov方法考察了第一个临界值在多种频率组合下的变化趋势, 并用数值仿真验证了解析结果的正确性.
    There are many resonance phenomena in a nonlinear dynamical system subjected to forced excitation, especially the excitation with multiple frequencies. Duffing oscillator subjected to the excitation with multiple frequencies may exhibit some complex resonance phenomena, such as simultaneous resonance and combination resonance. In this paper, the simultaneous primary and super-harmonic resonance of Duffing oscillator is studied, and it is analyzed in periodic motion and chaotic motion. Firstly, the approximate analytical solution is obtained by the method of multiple scales, and the correctness and accuracy of the analytical solution are verified through numerical simulation. Furthermore, the amplitude-frequency equation and phase-frequency equation of the steady-state response are derived from the approximate solution, and the stability of the steady-state response is analyzed based on Lyapunov’s first method. It is found that there are at most two stable periodic solutions and one unstable periodic solution. The effects of nonlinear stiffness on steady-state response is also analyzed through numerical simulation. However, the approximate solution obtained by the singular perturbation method is not sufficient to describe the global characteristics of the system, therefore, the necessary condition for the chaos in the sense of Smale horseshoes is derived based on the Melnikov method. Finally, one-demonstrational system that meets the condition of simultaneous resonance is analyzed through numerical simulation, and the bifurcation diagram shows the two thresholds of the demonstration system. At the first threshold, the heteroclinic orbit of the system breaks, and the system goes to chaos in crisis way. At the second threshold, the crisis reappears and the new strange attractor appears. The variation of the first critical value under various frequency combinations is investigated based on the Melnikov method, and the results are compared with the results of numerical simulation. The analytical and numerical results are qualitatively the same although there is a quantitative difference between them.
      通信作者: 申永军, shenyongjun@126.com
    • 基金项目: 国家自然科学基金(批准号: U1934201, 11772206)资助的课题
      Corresponding author: Shen Yong-Jun, shenyongjun@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1934201, 11772206)
    [1]

    孟光, 薛中擎 1989 航空动力学报 2 173

    Meng G, Xue Z Q 1989 J. Aerosp. Power 2 173

    [2]

    Ertas A, Chew E K 1990 Int. J. Non Linear Mech. 25 241Google Scholar

    [3]

    Pan R, Davies H G 1996 Nonlinear Dyn. 9 349Google Scholar

    [4]

    刘亚冲 2019 船舶力学 23 135Google Scholar

    Liu Y C 2019 J. Ship Mech. 23 135Google Scholar

    [5]

    Huan R H, Zhu W Q, Ma F, Ying Z G 2014 Nonlinear Dyn. 76 765Google Scholar

    [6]

    宦荣华, 宋亚轻, 朱位秋 2014 浙江大学学报(工学版) 48 321

    Huan R H, Song Y Q, Zhu W Q 2014 J. Zhejiang Univ. (Eng. Sci.) 48 321

    [7]

    Hu N Q, Wen X S 2003 J. Sound Vibr. 268 917Google Scholar

    [8]

    姚海洋, 王海燕, 张之琛, 申晓红 2017 66 124302Google Scholar

    Yao H Y, Wang H Y, Zhang Z C, Shen X H 2017 Acta Phys. Sin. 66 124302Google Scholar

    [9]

    曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅 2019 68 0805010

    Cao B F, Li P, Li X Q, Zhang X Q, Ning W S, Liang R, Li X, Hu M, Zheng Y 2019 Acta Phys. Sin. 68 0805010

    [10]

    Erturk A, Inman D J 2011 J. Sound Vibr. 330 2339Google Scholar

    [11]

    Wang Y L, Yang Z B, Li P Y, Cao D Q, Huang W H, Inman D J 2020 Nano Energy 75 104853Google Scholar

    [12]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3092Google Scholar

    [13]

    Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non Linear Mech. 47 975Google Scholar

    [14]

    Agarwal V, Zheng X, Balachandran B 2018 Phys. Lett. A 382 3355Google Scholar

    [15]

    温少芳, 申永军, 杨绍普 2016 65 094502Google Scholar

    Wen S F, Shen Y J, Yang S P 2016 Acta Phys. Sin. 65 094502Google Scholar

    [16]

    杨晓丽, 徐伟, 孙中奎 2006 55 1678Google Scholar

    Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678Google Scholar

    [17]

    马少娟, 徐伟, 李伟 2006 55 4013Google Scholar

    Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013Google Scholar

    [18]

    吴存利, 马少娟, 孙中奎, 方同 2006 55 6253Google Scholar

    Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253Google Scholar

    [19]

    Niu J C, Liu R Y, Shen Y J, Yang S P 2019 Chaos 29 123106Google Scholar

    [20]

    Liu X J, Li H, Jiang J, Tang D F, Yang L X 2016 Nonlinear Dyn. 83 1419Google Scholar

    [21]

    Shen Y J, Wen S F, Li X H, Yang S P, Xing H J 2016 Nonlinear Dyn. 85 1457Google Scholar

    [22]

    Niu J C, Shen Y J, Yang S P, Li S J 2018 J. Vib. Control 24 3744Google Scholar

    [23]

    Hassan A 1994 J. Sound Vibr. 172 513Google Scholar

    [24]

    Van K N, Chien T Q 2016 J. Comput. Nonlinear Dyn. 11 051018Google Scholar

    [25]

    Yang S P, Nayfeh A H, Mook D T 1998 Acta Mech. 131 235Google Scholar

    [26]

    李航, 申永军, 李向红, 韩彦军, 彭孟菲 2020 力学学报 52 514Google Scholar

    Li H, Shen Y J, Li X H, Han Y J, Peng M F 2020 Chin. J. Theor. Appl. Mech. 52 514Google Scholar

    [27]

    Nayfeh A H, Mook D T 2008 Nonlinear oscillations (New York: John Wiley & Sons) pp162–192

    [28]

    Szemplinska-Stupnicka W, Bajkowski J 1986 Int. J. Non Linear Mech. 21 401Google Scholar

    [29]

    Van Dooren R 1988 J. Sound Vibr. 123 327Google Scholar

    [30]

    毕勤胜, 陈予恕, 吴志强 1998 应用数学和力学 19 113

    Bi Q S, Chen Y S, Wu Z Q 1998 Appl. Math. Mech. 19 113

    [31]

    胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第25−30页

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) pp25−30(in Chinese)

    [32]

    Hosea M E, Shampine L F 1996 Appl. Numer. Math. 20 21Google Scholar

    [33]

    Shampine L F, Reichelt M W, Kierzenka J A 1999 SIAM Rev. 41 538Google Scholar

    [34]

    Lai D, Chen G 1998 Math. Comput. Modell. 27 1

  • 图 1  幅频曲线对比

    Fig. 1.  Comparisons of amplitude-frequency curves.

    图 2  位移时间历程对比 (a) 瞬态响应; (b) 稳态响应

    Fig. 2.  Comparisons of displacement time histories: (a) Transient response; (b) steady-state response.

    图 3  定常解的幅频曲线 (a) ${\alpha _1} \!=\! - 0.4$, 刚度软化; (b) ${\alpha _1} \!=\! 0.4$, 刚度硬化 (圆表示稳定解支, 星号表示不稳定解支)

    Fig. 3.  Amplitude-frequency curves of steady-state response: (a) ${\alpha _1} = - 0.4$, stiffness softening; (b) ${\alpha _1} = 0.4$, stiffness hardening (the circles for stable solution and the asterisks for unstable one).

    图 4  定常解的相频曲线 (a) ${\alpha _1} \!=\! - 0.4$, 刚度软化; (b) ${\alpha _1} \!= 0.4$, 刚度硬化(圆表示稳定解支, 星号表示不稳定解支)

    Fig. 4.  Phase-frequency curves of steady-state response: (a) ${\alpha _1} = - 0.4$, stiffness softening; (b) ${\alpha _1} = 0.4$, stiffness hardening (the circles for stable solution and the asterisks for unstable one).

    图 5  非线性系数${\alpha _1}$的影响 (a) 刚度软化; (b) 刚度硬化 (圆表示稳定解支, 星号表示不稳定解支)

    Fig. 5.  Effects of the nonlinear coefficient ${\alpha _1}$: (a) Stiffness softening; (b) stiffness hardening (the circles for stable solution and the asterisks for unstable one).

    图 6  系统(1)随${F_2}$变化的分岔图 (a) 整体图; (b) 局部放大图

    Fig. 6.  Bifurcation diagram of Eq. (1) changing with ${F_2}$: (a) Panoramic view; (b) local enlarged view.

    图 7  系统(1)的最大Lyapunov指数随${F_2}$变化的趋势 (a) 整体图; (b) 局部放大图

    Fig. 7.  The trend of the largest Lyapunov exponent of Eq. (1) changing with ${F_2}$: (a) Panoramic view; (b) Local enlarged view.

    图 8  ${F_2} = 0.259$时的周期轨道

    Fig. 8.  Periodic orbits for ${F_2} = 0.259$.

    图 9  ${F_2} = 0.2595$时的混沌状态 (a) Poincare截面; (b) 位移时间历程; (c) 相轨迹

    Fig. 9.  Chaotic state for ${F_2} = 0.2595$: (a) Poincare map; (b) displacement time histories; (c) phase trajectory.

    图 10  ${F_2} = 0.268$时的混沌状态 (a) 位移时间历程; (b) 相轨迹

    Fig. 10.  Chaotic state for ${F_2} = 0.268$: (a) Displacement time histories; (b) phase trajectory.

    图 11  临界激励幅值${F_2}$的解析结果与数值仿真结果对比 (a) ${\omega _1} = 3{\omega _2}$; (b) ${\omega _1} = 1.1$; (c) ${\omega _2} = 0.3667$ (星号代表解析结果, 圆代表数值仿真结果)

    Fig. 11.  Comparisons of analytical results and numerical simulation results of critical excitation amplitude ${F_2}$: (a) ${\omega _1} = 3{\omega _2}$; (b) ${\omega _1} = 1.1$; (c) ${\omega _2} = 0.3667$ (the asterisks for analytical results and the circles for numerical simulation results).

    Baidu
  • [1]

    孟光, 薛中擎 1989 航空动力学报 2 173

    Meng G, Xue Z Q 1989 J. Aerosp. Power 2 173

    [2]

    Ertas A, Chew E K 1990 Int. J. Non Linear Mech. 25 241Google Scholar

    [3]

    Pan R, Davies H G 1996 Nonlinear Dyn. 9 349Google Scholar

    [4]

    刘亚冲 2019 船舶力学 23 135Google Scholar

    Liu Y C 2019 J. Ship Mech. 23 135Google Scholar

    [5]

    Huan R H, Zhu W Q, Ma F, Ying Z G 2014 Nonlinear Dyn. 76 765Google Scholar

    [6]

    宦荣华, 宋亚轻, 朱位秋 2014 浙江大学学报(工学版) 48 321

    Huan R H, Song Y Q, Zhu W Q 2014 J. Zhejiang Univ. (Eng. Sci.) 48 321

    [7]

    Hu N Q, Wen X S 2003 J. Sound Vibr. 268 917Google Scholar

    [8]

    姚海洋, 王海燕, 张之琛, 申晓红 2017 66 124302Google Scholar

    Yao H Y, Wang H Y, Zhang Z C, Shen X H 2017 Acta Phys. Sin. 66 124302Google Scholar

    [9]

    曹保锋, 李鹏, 李小强, 张雪芹, 宁王师, 梁睿, 李欣, 胡淼, 郑毅 2019 68 0805010

    Cao B F, Li P, Li X Q, Zhang X Q, Ning W S, Liang R, Li X, Hu M, Zheng Y 2019 Acta Phys. Sin. 68 0805010

    [10]

    Erturk A, Inman D J 2011 J. Sound Vibr. 330 2339Google Scholar

    [11]

    Wang Y L, Yang Z B, Li P Y, Cao D Q, Huang W H, Inman D J 2020 Nano Energy 75 104853Google Scholar

    [12]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nonlinear Sci. Numer. Simul. 17 3092Google Scholar

    [13]

    Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Non Linear Mech. 47 975Google Scholar

    [14]

    Agarwal V, Zheng X, Balachandran B 2018 Phys. Lett. A 382 3355Google Scholar

    [15]

    温少芳, 申永军, 杨绍普 2016 65 094502Google Scholar

    Wen S F, Shen Y J, Yang S P 2016 Acta Phys. Sin. 65 094502Google Scholar

    [16]

    杨晓丽, 徐伟, 孙中奎 2006 55 1678Google Scholar

    Yang X L, Xu W, Sun Z K 2006 Acta Phys. Sin. 55 1678Google Scholar

    [17]

    马少娟, 徐伟, 李伟 2006 55 4013Google Scholar

    Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013Google Scholar

    [18]

    吴存利, 马少娟, 孙中奎, 方同 2006 55 6253Google Scholar

    Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253Google Scholar

    [19]

    Niu J C, Liu R Y, Shen Y J, Yang S P 2019 Chaos 29 123106Google Scholar

    [20]

    Liu X J, Li H, Jiang J, Tang D F, Yang L X 2016 Nonlinear Dyn. 83 1419Google Scholar

    [21]

    Shen Y J, Wen S F, Li X H, Yang S P, Xing H J 2016 Nonlinear Dyn. 85 1457Google Scholar

    [22]

    Niu J C, Shen Y J, Yang S P, Li S J 2018 J. Vib. Control 24 3744Google Scholar

    [23]

    Hassan A 1994 J. Sound Vibr. 172 513Google Scholar

    [24]

    Van K N, Chien T Q 2016 J. Comput. Nonlinear Dyn. 11 051018Google Scholar

    [25]

    Yang S P, Nayfeh A H, Mook D T 1998 Acta Mech. 131 235Google Scholar

    [26]

    李航, 申永军, 李向红, 韩彦军, 彭孟菲 2020 力学学报 52 514Google Scholar

    Li H, Shen Y J, Li X H, Han Y J, Peng M F 2020 Chin. J. Theor. Appl. Mech. 52 514Google Scholar

    [27]

    Nayfeh A H, Mook D T 2008 Nonlinear oscillations (New York: John Wiley & Sons) pp162–192

    [28]

    Szemplinska-Stupnicka W, Bajkowski J 1986 Int. J. Non Linear Mech. 21 401Google Scholar

    [29]

    Van Dooren R 1988 J. Sound Vibr. 123 327Google Scholar

    [30]

    毕勤胜, 陈予恕, 吴志强 1998 应用数学和力学 19 113

    Bi Q S, Chen Y S, Wu Z Q 1998 Appl. Math. Mech. 19 113

    [31]

    胡海岩 2000 应用非线性动力学 (北京: 航空工业出版社) 第25−30页

    Hu H Y 2000 Applied Nonlinear Dynamics (Beijing: Aviation Industry Press) pp25−30(in Chinese)

    [32]

    Hosea M E, Shampine L F 1996 Appl. Numer. Math. 20 21Google Scholar

    [33]

    Shampine L F, Reichelt M W, Kierzenka J A 1999 SIAM Rev. 41 538Google Scholar

    [34]

    Lai D, Chen G 1998 Math. Comput. Modell. 27 1

  • [1] 赵武, 张鸿斌, 孙超凡, 黄丹, 范俊锴. 受垂直激励和水平约束的单摆系统亚谐共振分岔与混沌.  , 2021, 70(24): 240202. doi: 10.7498/aps.70.20210953
    [2] 黄泽徽, 李亚安, 陈哲, 刘恋. 基于多尺度熵的Duffing混沌系统阈值确定方法.  , 2020, 69(16): 160501. doi: 10.7498/aps.69.20191642
    [3] 陆见光, 唐卷, 秦小林, 冯勇. 改进的保群算法及其在混沌系统中的应用.  , 2016, 65(11): 110501. doi: 10.7498/aps.65.110501
    [4] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究.  , 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [5] 李晓静, 严静, 陈绚青, 曹毅. 具有一般非线性弹性力和广义阻尼力的相对转动非线性系统的周期解问题.  , 2014, 63(20): 200202. doi: 10.7498/aps.63.200202
    [6] 侯东晓, 赵红旭, 刘彬. 一类含Mathieu-Duffing振子的相对转动系统的分岔和混沌.  , 2013, 62(23): 234501. doi: 10.7498/aps.62.234501
    [7] 李海滨, 王博华, 张志强, 刘爽, 李延树. 一类非线性相对转动系统的组合共振分岔与混沌.  , 2012, 61(9): 094501. doi: 10.7498/aps.61.094501
    [8] 唐友福, 刘树林, 雷娜, 姜锐红, 刘颖慧. 基于广义局部频率的Duffing系统频域特征分析.  , 2012, 61(17): 170504. doi: 10.7498/aps.61.170504
    [9] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解.  , 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [10] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解.  , 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [11] 时培明, 刘 彬, 侯东晓. 一类相对转动非线性动力系统的混沌运动.  , 2008, 57(3): 1321-1328. doi: 10.7498/aps.57.1321
    [12] 戎海武, 王向东, 徐 伟, 方 同. 谐和与噪声联合作用下Duffing振子的安全盆分叉与混沌.  , 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [13] 刘云峰, 杨小冈, 缪 栋, 袁润平. 基于模糊滑模的有限时间混沌同步实现.  , 2007, 56(11): 6250-6257. doi: 10.7498/aps.56.6250
    [14] 雷佑铭, 徐 伟. 有界噪声和谐和激励联合作用下一类非线性系统的混沌研究.  , 2007, 56(9): 5103-5110. doi: 10.7498/aps.56.5103
    [15] 时培明, 刘 彬. 相对转动非线性动力系统的稳定性与强迫激励下的近似解.  , 2007, 56(7): 3678-3682. doi: 10.7498/aps.56.3678
    [16] 陶朝海, 陆君安. 混沌系统的速度反馈同步.  , 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步.  , 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [18] 唐国宁, 罗晓曙. 混沌系统的预测反馈控制.  , 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [19] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数.  , 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
    [20] 伍维根, 古天祥. 混沌系统的非线性反馈跟踪控制.  , 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
计量
  • 文章访问数:  6409
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-09-07
  • 上网日期:  2021-02-02
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map