搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电致伸缩效应的水中纳秒脉冲放电起始机制

李元 李林波 温嘉烨 倪正全 张冠军

引用本文:
Citation:

基于电致伸缩效应的水中纳秒脉冲放电起始机制

李元, 李林波, 温嘉烨, 倪正全, 张冠军

Initiation of nanosecond-pulsed discharge in water: Electrostriction effect

Li Yuan, Li Lin-Bo, Wen Jia-Ye, Ni Zheng-Quan, Zhang Guan-Jun
PDF
HTML
导出引用
  • 水中纳秒脉冲放电的起始阶段包含了丰富的物理过程, 现有实验诊断技术在揭示数纳秒内液体中电荷输运、倍增过程方面还有不少困难, 放电起始的机制尚不明确. 本文建立了针板电极二维轴对称水中放电物理模型, 仿真研究纳秒脉冲导致的水中电致伸缩效应、空化过程和随后的液体电离过程. 结果表明, 在纳秒脉冲电压作用下, 电致伸缩效应可导致针尖附近数微米区域内的液体发生空化, 形成大量纳米尺度的空腔; 空腔在其表面电致伸缩压强的作用下膨胀, 为电子提供了加速空间; 高能电子可引发水分子的碰撞电离, 使局域液体被快速电离. 电致伸缩机制为理解水中纳秒脉冲放电的起始过程提供了新的视角.
    Underwater nanosecond-pulsed discharges have been widely utilized in numerous industrial applications. The initial stage of nanosecond-pulsed discharge in water contains extremely abundant physical processes, however, it is still difficult to reveal the details of charge transportation and multiplicative process in liquid within several nanoseconds by currently existing experimental diagnostic techniques. Up to now, the initiation mechanism of underwater nanosecond discharge has been still a puzzle. In this paper, we develop a two-dimensional axially symmetric underwater discharge model of pin-to-plane, and numerically investigate the electrostriction process, cavitation process, and ionization process in water, induced by nanosecond-pulsed voltage. The negative pressure in water caused by tensile ponderomotive force is calculated. The creation of nanoscale cavities (so-called nanopores) in liquid due to negative pressure is modeled by classical nucleation theory with modified nucleation energy barrier. When estimating the temporal development of nanopore radius, a varying hydrostatic pressure is considered to restrain the unlimited expansion of nanopores. We estimate the electron generation rate by the product of the generation rate of incident electrons and the number density of nanopores. The simulation results show that cavitation occurs in liquid within several microns from pin electrode due to the electrostriction, which results in the formation of a large number of nanopores. The expansion of nanopore, caused by electrostrictive pressure on nanopore surface, provides a sufficient acceleration distance for electrons. The impact ionization of water molecules can be triggered by energetic electrons, leading the local liquid to be ionized rapidly. The effects of nanopores on rapid electron generation in water are discussed. Once nanopores are formed, the electrons can be generated in the following ways: 1) Field ionization of water molecules on the nanopore wall continuously provides seed electrons; 2) the seed electrons accelerated in nanopores enter into the liquid and collide with water molecules, resulting in the rapid increase of electrons. It can be inferred that the randomly scattered nanopores act as micro-sources of charges that contribute to the continuing ionization of liquid water in cavitation region near pin electrode. Electrostriction mechanism provides a new perspective for understanding the initiation of nanosecond-pulsed discharge in water.
      通信作者: 李元, liyuan8490@xjtu.edu.cn ; 张冠军, gjzhang@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51607139)资助的课题
      Corresponding author: Li Yuan, liyuan8490@xjtu.edu.cn ; Zhang Guan-Jun, gjzhang@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51607139)
    [1]

    尤特金 1962 液电效应 (北京: 科学出版社) 第45−50页

    Yutkin 1962 Electro-hydraulic Effect (Beijing: Science Press) pp45−50 (in Chinese)

    [2]

    Torres L, Yadav O P, Khan E 2016 Sci. Total Environ. 539 478Google Scholar

    [3]

    刘毅, 李志远, 李显东, 林福昌, 潘垣 2016 电工技术学报 31 71Google Scholar

    Liu Y, Li Z Y, Li X D, Lin F C, Pan Y 2016 Transactions of China Electrotechnical Society 31 71Google Scholar

    [4]

    付荣耀, 孙鹞鸿, 刘坤, 高迎慧, 徐旭哲, 严萍 2018 强激光与粒子束 30 131Google Scholar

    Fu R Y, Sun Y H, Liu K, Gao Y H, Xu X Z, Yan P 2018 High Power Laser and Particle Beams 30 131Google Scholar

    [5]

    Bluhm H, Frey W, Giese H, Hoppe P, Schultheiss C, Strassner R 2000 IEEE Trans. Dielect. Electr. Insul. 7 625Google Scholar

    [6]

    卢新培, 潘垣, 张寒虹 2002 51 1768Google Scholar

    Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1768Google Scholar

    [7]

    程虎, 叶齐政, 覃世勋, 李劲 2007 高电压技术 2 150Google Scholar

    Cheng H, Ye Q Z, Qin S X, Li J 2007 High Voltage Engineering 2 150Google Scholar

    [8]

    陈银生, 张新胜, 常胜, 戴迎春, 袁渭康 2005 环境科学学报 25 113Google Scholar

    Chen Y S, Zhang X S, Chang S, Dai Y C, Yuan W K 2005 Acta Scientiae Circumstantiae 25 113Google Scholar

    [9]

    曹颖, 姜楠, 段丽娟, 郭贺, 任景俞, 王璞, 周集体, 李杰, 吴彦 2018 环境工程学报 12 956Google Scholar

    Cao Y, Jiang N, Duan L J, Guo H, Ren J Y, Wang P, Zhou J T, Li J, Wu Y 2018 Chinese Journal of Environmental Engineering 12 956Google Scholar

    [10]

    张梦瑶, 温嘉烨, 李元, 宋佰鹏, 张冠军 2019 高电压技术 45 4130Google Scholar

    Zhang M Y, Wen J Y, Li Y, Song B P, Zhang G J 2019 High Voltage Engineering 45 4130Google Scholar

    [11]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE Trans. Ind. Appl. 32 106Google Scholar

    [12]

    李显东 2018 博士学位论文 (武汉: 华中科技大学)

    Li X D 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [13]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [14]

    Jones H M, Kunhardt E E 1995 J. Phys. D: Appl. Phys. 28 178Google Scholar

    [15]

    李显东, 刘毅, 周古月, 刘思维, 李志远, 林福昌, 潘垣 2018 中国电机工程学报 38 1562Google Scholar

    Li X D, Liu Y, Zhou G Y, Liu S W, Li Z Y, Lin F C, Pan Y 2018 Proceeding of the CSEE 38 1562Google Scholar

    [16]

    童得恩, 朱鑫磊, 邹晓兵, 王新新 2019 高电压技术 45 1461Google Scholar

    Dong D E, Zhu X L, Zou X B, Wang X X 2019 High Voltage Engineering 45 1461Google Scholar

    [17]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [18]

    Šimek M, Hoffer P, Tungli J, Prukner V, Schmidt J, Bílek P, Bonaventura Z 2020 Plasma Sources Sci. Technol. 29Google Scholar

    [19]

    Shneider M, Pekker M, Fridman A 2012 IEEE Trans. Dielect. Electr. Insul. 19 1579Google Scholar

    [20]

    Shneider M N, Pekker M 2013 J. Appl. Phys. 114 214906Google Scholar

    [21]

    Pekker M, Seepersad Y, Shneider M N, Fridman A, Dobrynin D 2014 J. Phys. D: Appl. Phys. 47 025502Google Scholar

    [22]

    Starikovskiy A 2013 Plasma Sources Sci. Technol. 22 012001Google Scholar

    [23]

    Pekker M, Shneider M N 2017 Fluid Dyn. Res. 49 035503Google Scholar

    [24]

    涂婧怡, 陈赦, 汪沨 2019 68 095202Google Scholar

    Tu J Y, Chen S, Wang F 2019 Acta Phys. Sin. 68 095202Google Scholar

    [25]

    章程, 邵涛, 龙凯华, 王珏, 张东东, 严萍 2010 强激光与粒子束 22 479Google Scholar

    Zhang C, Shao T, Long K H, Wang Y, Zhang D D, Yan P 2010 High Power Laser and Particle Beams 22 479Google Scholar

    [26]

    周中升, 章程, 邵涛, 杨文晋, 方志, 张东东 2014 高电压技术 40 3290Google Scholar

    Zhou Z S, Zhang C, Shao T, Yang W J, Fang Z, Zhang D D 2014 High Voltage Engineering 40 3290Google Scholar

    [27]

    Li Y, Li L, Wen J, Zhang J, Wang L, Zhang G J 2020 Plasma Sources Sci. Technol. 29 075005Google Scholar

    [28]

    Li Y H 1967 J. Geophys. Res. 72 2665Google Scholar

    [29]

    Fisher J C 1948 J. Appl. Phys. 19 1062Google Scholar

    [30]

    Caupin F, Arvengas A, Davitt K, Azouzi M E M, Shmulovich K, Ramboz C, Sessoms D, Stroock A D 2012 J. Phys. Condens. Matter 24 284110Google Scholar

    [31]

    Shneider M N, Pekker M 2015 J. Appl. Phys. 117 224902Google Scholar

    [32]

    Delale C F, Hruby J, Marsik F 2003 J. Chem. Phys. 118 792Google Scholar

    [33]

    Pekker M, Shneider M N 2015 J. Phys. D: Appl. Phys. 48 424009Google Scholar

    [34]

    Grosse K, Held J, Kai M, von Keudell A 2019 Plasma Sources Sci. Technol. 28 085003Google Scholar

    [35]

    Davitt K, Arvengas A, Caupin F 2010 Europhys. Lett. 90 16002Google Scholar

    [36]

    Babaeva N Y, Tereshonok D V, Naidis G V 2015 J. Phys. D: Appl. Phys. 48 355201Google Scholar

    [37]

    Zener C, Fowler R H 1934 Proc. Trans. R. Soc. A 145 523Google Scholar

    [38]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J R, Lehr J 2006 J. Phys. D: Appl. Phys. 39 359Google Scholar

    [39]

    Bordage M C, Bordes J, Edel S, Terrissol M, Franceries X, Bardiès M, Lampe N, Incerti S 2016 Phys. Med. 32 1833Google Scholar

    [40]

    王琪, 王萌, 王珏, 严萍 2020 强激光与粒子束 32 63Google Scholar

    Wang Q, Wang M, Wang Y, Yan P 2020 High Power Laser and Particle Beams 32 63Google Scholar

    [41]

    Pontiga F, Castellanos A 1996 IEEE Trans. Dielect. Electr. Insul. 3 792Google Scholar

    [42]

    Hernandez J P 1991 Rev. Mod. Phys. 63 675Google Scholar

    [43]

    Barnett R N, Landman U, Nitzan A 1990 J. Chem. Phys. 93 8187Google Scholar

    [44]

    Seepersad Y, Pekker M, Shneider M N, Fridman A, Dobrynin D 2013 J. Phys. D: Appl. Phys. 46 355201Google Scholar

    [45]

    Shneider M N, Pekker M 2013 Phys. Rev. E 87 043004Google Scholar

    [46]

    Dobrynin D, Seepersad Y, Pekker M, Shneider M, Friedman G, Fridman A 2013 J. Phys. D: Appl. Phys. 46 105201Google Scholar

    [47]

    Meesungnoen J, Jay Gerin J P, Filali Mouhim A, Mankhetkorn S 2002 Radiat. Res. 158 657Google Scholar

    [48]

    Qian J, Joshi R P, Kolb J, Schoenbach K H, Dickens J, Neuber A, Butcher M, Cevallos M, Krompholz H, Schamiloglu E, Gaudet J 2005 J. Appl. Phys. 97 113304Google Scholar

    [49]

    Seepersad Y, Fridman A, Dobrynin D 2015 J. Phys. D: Appl. Phys. 48 424012Google Scholar

    [50]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 62 124703Google Scholar

    Li Y, Mu H B, Den J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [51]

    Aghdam A C, Farouk T 2020 Plasma Sources Sci. Technol. 29 025011Google Scholar

  • 图 1  水中纳秒放电起始阶段各物理过程的关系

    Fig. 1.  Correlations between the processes during the nanosecond discharge initiation in water.

    图 2  数值模拟流程

    Fig. 2.  Flow chart of simulation.

    图 3  脉冲电压施加后水的流速与压强分布 (a) t = 2 ns; (b) t = 3 ns

    Fig. 3.  Distribution of liquid velocity and pressures: (a) t = 2 ns; (b) t = 3 ns.

    图 4  脉冲电压施加后针板电极对称轴上压强分布 (a) t = 2 ns; (b) t = 3 ns

    Fig. 4.  Pressures along the symmetric axis since the start of pulsed voltage: (a) t = 2 ns; (b) t = 3 ns.

    图 5  不同时刻针板电极对称轴上空腔数密度分布

    Fig. 5.  Temporal evolution of number density of nanopores along the symmetric axis.

    图 6  不同时刻针板电极对称轴上空腔半径

    Fig. 6.  Temporal evolution of nanopore radii along the symmetric axis.

    图 7  针板电极对称轴上电子能量分布的时空演化

    Fig. 7.  Temporal evolution of electron energy along the symmetric axis.

    图 8  不同时刻水中电离过程 (a) 电子生成速率; (b) 电子数密度

    Fig. 8.  Temporal evolution of ionization process in water: (a) Electron generation rate; (b) electron density.

    图 9  空腔导致液体电离的机制

    Fig. 9.  Schematic of nanopore-induced liquid ionization.

    图 10  由水中电致伸缩和场致电离机制得到的电离速率 (t = 5 ns)

    Fig. 10.  Ionization rate induced by electrostriction and field ionization mechanisms (t = 5 ns).

    Baidu
  • [1]

    尤特金 1962 液电效应 (北京: 科学出版社) 第45−50页

    Yutkin 1962 Electro-hydraulic Effect (Beijing: Science Press) pp45−50 (in Chinese)

    [2]

    Torres L, Yadav O P, Khan E 2016 Sci. Total Environ. 539 478Google Scholar

    [3]

    刘毅, 李志远, 李显东, 林福昌, 潘垣 2016 电工技术学报 31 71Google Scholar

    Liu Y, Li Z Y, Li X D, Lin F C, Pan Y 2016 Transactions of China Electrotechnical Society 31 71Google Scholar

    [4]

    付荣耀, 孙鹞鸿, 刘坤, 高迎慧, 徐旭哲, 严萍 2018 强激光与粒子束 30 131Google Scholar

    Fu R Y, Sun Y H, Liu K, Gao Y H, Xu X Z, Yan P 2018 High Power Laser and Particle Beams 30 131Google Scholar

    [5]

    Bluhm H, Frey W, Giese H, Hoppe P, Schultheiss C, Strassner R 2000 IEEE Trans. Dielect. Electr. Insul. 7 625Google Scholar

    [6]

    卢新培, 潘垣, 张寒虹 2002 51 1768Google Scholar

    Lu X P, Pan Y, Zhang H H 2002 Acta Phys. Sin. 51 1768Google Scholar

    [7]

    程虎, 叶齐政, 覃世勋, 李劲 2007 高电压技术 2 150Google Scholar

    Cheng H, Ye Q Z, Qin S X, Li J 2007 High Voltage Engineering 2 150Google Scholar

    [8]

    陈银生, 张新胜, 常胜, 戴迎春, 袁渭康 2005 环境科学学报 25 113Google Scholar

    Chen Y S, Zhang X S, Chang S, Dai Y C, Yuan W K 2005 Acta Scientiae Circumstantiae 25 113Google Scholar

    [9]

    曹颖, 姜楠, 段丽娟, 郭贺, 任景俞, 王璞, 周集体, 李杰, 吴彦 2018 环境工程学报 12 956Google Scholar

    Cao Y, Jiang N, Duan L J, Guo H, Ren J Y, Wang P, Zhou J T, Li J, Wu Y 2018 Chinese Journal of Environmental Engineering 12 956Google Scholar

    [10]

    张梦瑶, 温嘉烨, 李元, 宋佰鹏, 张冠军 2019 高电压技术 45 4130Google Scholar

    Zhang M Y, Wen J Y, Li Y, Song B P, Zhang G J 2019 High Voltage Engineering 45 4130Google Scholar

    [11]

    Sato M, Ohgiyama T, Clements J S 1996 IEEE Trans. Ind. Appl. 32 106Google Scholar

    [12]

    李显东 2018 博士学位论文 (武汉: 华中科技大学)

    Li X D 2018 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [13]

    Fujita H, Kanazawa S, Ohtani K, Komiya A, Kaneko T, Sato T 2014 J. Appl. Phys. 116 213301Google Scholar

    [14]

    Jones H M, Kunhardt E E 1995 J. Phys. D: Appl. Phys. 28 178Google Scholar

    [15]

    李显东, 刘毅, 周古月, 刘思维, 李志远, 林福昌, 潘垣 2018 中国电机工程学报 38 1562Google Scholar

    Li X D, Liu Y, Zhou G Y, Liu S W, Li Z Y, Lin F C, Pan Y 2018 Proceeding of the CSEE 38 1562Google Scholar

    [16]

    童得恩, 朱鑫磊, 邹晓兵, 王新新 2019 高电压技术 45 1461Google Scholar

    Dong D E, Zhu X L, Zou X B, Wang X X 2019 High Voltage Engineering 45 1461Google Scholar

    [17]

    Marinov I, Starikovskaia S, Rousseau A 2014 J. Phys. D: Appl. Phys. 47 224017Google Scholar

    [18]

    Šimek M, Hoffer P, Tungli J, Prukner V, Schmidt J, Bílek P, Bonaventura Z 2020 Plasma Sources Sci. Technol. 29Google Scholar

    [19]

    Shneider M, Pekker M, Fridman A 2012 IEEE Trans. Dielect. Electr. Insul. 19 1579Google Scholar

    [20]

    Shneider M N, Pekker M 2013 J. Appl. Phys. 114 214906Google Scholar

    [21]

    Pekker M, Seepersad Y, Shneider M N, Fridman A, Dobrynin D 2014 J. Phys. D: Appl. Phys. 47 025502Google Scholar

    [22]

    Starikovskiy A 2013 Plasma Sources Sci. Technol. 22 012001Google Scholar

    [23]

    Pekker M, Shneider M N 2017 Fluid Dyn. Res. 49 035503Google Scholar

    [24]

    涂婧怡, 陈赦, 汪沨 2019 68 095202Google Scholar

    Tu J Y, Chen S, Wang F 2019 Acta Phys. Sin. 68 095202Google Scholar

    [25]

    章程, 邵涛, 龙凯华, 王珏, 张东东, 严萍 2010 强激光与粒子束 22 479Google Scholar

    Zhang C, Shao T, Long K H, Wang Y, Zhang D D, Yan P 2010 High Power Laser and Particle Beams 22 479Google Scholar

    [26]

    周中升, 章程, 邵涛, 杨文晋, 方志, 张东东 2014 高电压技术 40 3290Google Scholar

    Zhou Z S, Zhang C, Shao T, Yang W J, Fang Z, Zhang D D 2014 High Voltage Engineering 40 3290Google Scholar

    [27]

    Li Y, Li L, Wen J, Zhang J, Wang L, Zhang G J 2020 Plasma Sources Sci. Technol. 29 075005Google Scholar

    [28]

    Li Y H 1967 J. Geophys. Res. 72 2665Google Scholar

    [29]

    Fisher J C 1948 J. Appl. Phys. 19 1062Google Scholar

    [30]

    Caupin F, Arvengas A, Davitt K, Azouzi M E M, Shmulovich K, Ramboz C, Sessoms D, Stroock A D 2012 J. Phys. Condens. Matter 24 284110Google Scholar

    [31]

    Shneider M N, Pekker M 2015 J. Appl. Phys. 117 224902Google Scholar

    [32]

    Delale C F, Hruby J, Marsik F 2003 J. Chem. Phys. 118 792Google Scholar

    [33]

    Pekker M, Shneider M N 2015 J. Phys. D: Appl. Phys. 48 424009Google Scholar

    [34]

    Grosse K, Held J, Kai M, von Keudell A 2019 Plasma Sources Sci. Technol. 28 085003Google Scholar

    [35]

    Davitt K, Arvengas A, Caupin F 2010 Europhys. Lett. 90 16002Google Scholar

    [36]

    Babaeva N Y, Tereshonok D V, Naidis G V 2015 J. Phys. D: Appl. Phys. 48 355201Google Scholar

    [37]

    Zener C, Fowler R H 1934 Proc. Trans. R. Soc. A 145 523Google Scholar

    [38]

    Qian J, Joshi R P, Schamiloglu E, Gaudet J, Woodworth J R, Lehr J 2006 J. Phys. D: Appl. Phys. 39 359Google Scholar

    [39]

    Bordage M C, Bordes J, Edel S, Terrissol M, Franceries X, Bardiès M, Lampe N, Incerti S 2016 Phys. Med. 32 1833Google Scholar

    [40]

    王琪, 王萌, 王珏, 严萍 2020 强激光与粒子束 32 63Google Scholar

    Wang Q, Wang M, Wang Y, Yan P 2020 High Power Laser and Particle Beams 32 63Google Scholar

    [41]

    Pontiga F, Castellanos A 1996 IEEE Trans. Dielect. Electr. Insul. 3 792Google Scholar

    [42]

    Hernandez J P 1991 Rev. Mod. Phys. 63 675Google Scholar

    [43]

    Barnett R N, Landman U, Nitzan A 1990 J. Chem. Phys. 93 8187Google Scholar

    [44]

    Seepersad Y, Pekker M, Shneider M N, Fridman A, Dobrynin D 2013 J. Phys. D: Appl. Phys. 46 355201Google Scholar

    [45]

    Shneider M N, Pekker M 2013 Phys. Rev. E 87 043004Google Scholar

    [46]

    Dobrynin D, Seepersad Y, Pekker M, Shneider M, Friedman G, Fridman A 2013 J. Phys. D: Appl. Phys. 46 105201Google Scholar

    [47]

    Meesungnoen J, Jay Gerin J P, Filali Mouhim A, Mankhetkorn S 2002 Radiat. Res. 158 657Google Scholar

    [48]

    Qian J, Joshi R P, Kolb J, Schoenbach K H, Dickens J, Neuber A, Butcher M, Cevallos M, Krompholz H, Schamiloglu E, Gaudet J 2005 J. Appl. Phys. 97 113304Google Scholar

    [49]

    Seepersad Y, Fridman A, Dobrynin D 2015 J. Phys. D: Appl. Phys. 48 424012Google Scholar

    [50]

    李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 62 124703Google Scholar

    Li Y, Mu H B, Den J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703Google Scholar

    [51]

    Aghdam A C, Farouk T 2020 Plasma Sources Sci. Technol. 29 025011Google Scholar

  • [1] 包西程, 邢耀文, 张凡凡, 张德轲, 刘秦杉, 杨海昌, 桂夏辉. 基于亚稳态液膜空化的长程疏水力作用机制.  , 2024, 73(3): 036801. doi: 10.7498/aps.73.20231109
    [2] 李元, 李春鹏, 李林波, 袁磊, 王亚桢, 石亚轩, 张冠军. 电致伸缩效应下水中电子输运特性.  , 2024, 73(11): 114701. doi: 10.7498/aps.73.20231893
    [3] 肖江平, 戴栋, Victor F. Tarasenko, 邵涛. 大气压空气纳秒脉冲板-板放电中逃逸电子产生机理.  , 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [4] 侯兴民, 章程, 邱锦涛, 顾建伟, 王瑞雪, 邵涛. 大气压管板结构纳秒脉冲放电中时域X射线研究.  , 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
    [5] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟.  , 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [6] 章程, 马浩, 邵涛, 谢庆, 杨文晋, 严萍. 纳秒脉冲气体放电中逃逸电子束流的研究.  , 2014, 63(8): 085208. doi: 10.7498/aps.63.085208
    [7] 屈少华, 曹万强. 球形无规键无规场模型研究弛豫铁电体极化效应.  , 2014, 63(4): 047701. doi: 10.7498/aps.63.047701
    [8] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟.  , 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [9] 李元, 穆海宝, 邓军波, 张冠军, 王曙鸿. 正极性纳秒脉冲电压下变压器油中流注放电仿真研究.  , 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [10] 章程, 邵涛, 牛铮, 张东东, 王珏, 严萍. 大气压尖板电极结构重复频率纳秒脉冲放电中X射线辐射特性研究.  , 2012, 61(3): 035202. doi: 10.7498/aps.61.035202
    [11] 沈壮志, 吴胜举. 声场与电场作用下空化泡的动力学特性.  , 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [12] 董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红. 介质阻挡放电中放电丝结构相变过程研究.  , 2010, 59(3): 1917-1922. doi: 10.7498/aps.59.1917
    [13] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究.  , 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] 吕晓桂, 任春生, 马腾才, 朱海龙, 钱沐扬, 王德真. 石英管对空气中锥-板结构纳秒脉冲放电的影响.  , 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [15] 高剑森, 张宁. 异型磁体/铁电复合材料中的电致变磁导及电致变阻抗效应.  , 2009, 58(12): 8607-8611. doi: 10.7498/aps.58.8607
    [16] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究.  , 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [17] 董丽芳, 高瑞玲, 贺亚峰, 范伟丽, 李雪辰, 刘书华, 刘微粒. 介质阻挡放电斑图中放电通道的相互作用研究.  , 2007, 56(3): 1471-1475. doi: 10.7498/aps.56.1471
    [18] 刘秀梅, 赵 瑞, 贺 杰, 陆 建, 倪晓武. 10-6—10-4m2/s黏度液体中靶受力学作用的测试与分析.  , 2007, 56(11): 6508-6513. doi: 10.7498/aps.56.6508
    [19] 卢新培, 潘垣, 张寒虹. 水中脉冲放电的电特性与声辐射特性研究.  , 2002, 51(7): 1549-1553. doi: 10.7498/aps.51.1549
    [20] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程.  , 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
计量
  • 文章访问数:  8132
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-08-04
  • 上网日期:  2021-01-07
  • 刊出日期:  2021-01-20

/

返回文章
返回
Baidu
map