搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Cayley图上量子漫步的匿名通信方案

贺振兴 范兴奎 初鹏程 马鸿洋

引用本文:
Citation:

基于Cayley图上量子漫步的匿名通信方案

贺振兴, 范兴奎, 初鹏程, 马鸿洋

Anonymous communication scheme based on quantum walk on Cayley graph

He Zhen-Xing, Fan Xing-Kui, Chu Peng-Cheng, Ma Hong-Yang
PDF
HTML
导出引用
  • 信息安全是信息化社会国家安全的基石与命脉, 而匿名量子通信是保护信息安全的重要通信方式之一. 利用量子漫步随机性有效解决身份信息泄露等敏感问题, 本文提出一种基于Cayley图上量子漫步的匿名通信方案. 首先, 通信双方隐藏自身身份信息, 发送方Alice通过逻辑或操作匿名选择接收方Bob. 其次, 可信第三方与通信双方利用BB84协议生成和分发安全密钥, Alice根据安全密钥对信息序列进行加密, 获得盲化信息; Bob利用联合Bell态测量和安全密钥进行签名, 可信第三方验证签名信息. 再次, 可信第三方依据傅里叶变换计算Bob量子漫步的位置概率分布函数, 将概率最大值对应的位置信息转换为确认帧发送给Alice; Alice利用量子降维压缩算法减少传输信息比特数, 并利用安全密钥完成信息加密后将信息传输至确认帧表示的位置, Bob利用量子漫步搜索位置节点获取传输信息, 完成匿名量子通信. 最后, 对方案进行安全分析, 并给出200个节点Cayley图的数值仿真结果, 漫步10步时, 第6个节点的概率最大为45.31%. 根据仿真结果, 本方案通信过程中Bob漫步10步时被窃听到具体位置的概率近似为6 × 10–7%.
    Information security is the cornerstone and lifeblood of national security in the information society, and anonymous quantum communication is one of the important ways to protect information security. Using quantum walk randomness to effectively solve sensitive problems such as leakage of identity information. In this paper, an anonymous communication scheme based on quantum walks on the Cayley graph is proposed. First, both parties in the communication hide their identity information, and the sender Alice anonymously selects the receiver Bob through logic or operation. Secondly, the trusted third party and the communicating parties use the BB84 protocol to generate and distribute the security key. Alice encrypts the information sequence according to the security key to obtain the blind information; Bob uses the joint Bell state measurement and security key to sign and the trusted third party verifies the signature information. Third, the trusted third party calculates the position probability distribution function of Bob’s quantum walk via the Fourier transform, converts the position information corresponding to the maximum probability into a confirmation frame and sends it to Alice; Alice uses the quantum compression algorithm by decreasing dimensions to reduce the number of transmitted information bits(the length of the information bit can be reduced by up to 37.5%) and uses the security key to complete the information encryption and then transmit the information to the location indicated by the confirmation frame. Bob uses quantum walks to search the location node to obtain the transmission information and complete the anonymous quantum communication. Finally, the security analysis of the scheme is carried out, and the numerical simulation results of the Cayley graph of 200 nodes are given. At the 10-step walk, the maximal probability of the 6th node is 45.31%. According to the simulation results, the probability that Bob is eavesdropped on the specific location at his 10-step walk during the communication of this scheme is approximately 6 × 10–7%, so the receiver can avoid the identity information from the eavesdropping with a high probability, and the quantum network anonymity protocol is not broken.
      通信作者: 马鸿洋, hongyang_ma@aliyun.com
    • 基金项目: 国家自然科学基金(批准号: 11975132, 61772295)、山东省自然科学基金(批准号: ZR2019YQ01)和山东省高等教育科技计划(批准号: J18KZ012)资助的课题
      Corresponding author: Ma Hong-Yang, hongyang_ma@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132, 61772295), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019YQ01), and the Project of Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J18KZ012)
    [1]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [2]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1892

    [3]

    胡钰安, 叶志清 2014 光子学报 43 827001Google Scholar

    Hu Y A, Ye Z Q 2014 Acta Photon. Sin. 43 827001Google Scholar

    [4]

    Unnikrishnan A, MacFarlane I J, Yi R, Diamanti E, Markham D, Kerenidis I 2019 Phys. Rev. Lett. 122 240510

    [5]

    Brassard G, Broadbent A, Fitzsimons J, Gambs S, Tapp A 2007 13 th International Conference on the Theory and Application of Cryptology and Information Security Kuching, Malaysia, December 2–6, 2007 pp460–473

    [6]

    陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phy. Sin. 64 040301

    [7]

    聂敏, 王林飞, 杨光, 张美玲, 裴昌幸 2015 64 210303Google Scholar

    Nie M, Wang L F, Yang G, Zhang M L, Pei C X 2015 Acta Phy. Sin. 64 210303Google Scholar

    [8]

    Wehner S 2004 Ph. D. Dissertation (Holland: Universiteit van Amsterdam)

    [9]

    Chaum D 1988 J. Cryptol. 1 1Google Scholar

    [10]

    Chen X B, Sun Y R, Xu G 2019 Inf. Sci. 501 172Google Scholar

    [11]

    Xu G, Xiao K, Li Z P, Niu X X, Ryan M 2019 CMC-Comput. Mater. Con. 58 809

    [12]

    Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98 052320Google Scholar

    [13]

    薛鹏, 郭光灿 2002 物理 31 385Google Scholar

    Xue P, Guo G C 2002 Physics 31 385Google Scholar

    [14]

    Boykin P O 2002 Ph. D. Dissertation (Los Angeles: University of California)

    [15]

    Christandl M, Wehner S 2005 11th International Conference on the Theory and Application of Cryptology and Information Chennai, India, December 4–8, 2005 pp217–235

    [16]

    Bouda J, Sprojcar J 2007 First International Conference on Quantum, Nano, and Micro Technologies Gosier, Guadeloupe, January 2–6, 2007 p12

    [17]

    Jiang L, He G Q, Nie D, Xiong J, Zeng G H 2012 Phys. Rev. A 85 042309Google Scholar

    [18]

    周南润, 龚黎华, 刘三秋, 曾贵华 2007 56 5066Google Scholar

    Zhou N R, Gong L H, Liu S Q, Zeng G H 2007 Acta Phys. Sin. 56 5066Google Scholar

    [19]

    Montanaro A 2016 NPJ Quantum Inf. 2 15023Google Scholar

    [20]

    杨乐, 李凯, 戴宏毅, 张明 2019 68 140301Google Scholar

    Yang L, Li K, Dai H Y, Zhang M 2019 Acta Phys. Sin. 68 140301Google Scholar

    [21]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310Google Scholar

    [22]

    Childs A M, Goldstone J 2004 Phys. Rev. A 70 022314Google Scholar

    [23]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing San Diego, America, June 9–11, 2003 pp59–68

    [24]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [25]

    Childs A M 2009 Phys. Rev. Lett. 102 180510

    [26]

    Zhan H 2019 Quantum Inf. Process. 18 369Google Scholar

    [27]

    Costa P, de Melo F, Portugal R 2019 Phys. Rev. A 100 042320Google Scholar

    [28]

    Di Molfetta G, Arrighi P 2020 Quantum Inf. Process. 19 47Google Scholar

    [29]

    Wong T G 2019 Phys. Rev. A 100 062325Google Scholar

    [30]

    Szigeti B E, Homa G, Zimborás Z, Barankai N 2019 Phys. Rev. A 100 062320Google Scholar

    [31]

    Wang Y, Shang Y, Xue P 2017 Quantum Inf. Process. 16 221Google Scholar

    [32]

    Feng Y Y, Shi R H, Shi J J, Zhou J, Guo Y 2019 Quantum Inf. Process. 18 154Google Scholar

    [33]

    Li H J, Li J, Xiang N, Zheng Y, Yang Y G, Naseri M 2019 Quantum Inf. Process. 18 316Google Scholar

    [34]

    Abd-El-Atty B, El-Latif A A A, Venegas-Andraca S E 2019 Quantum Inf. Process. 18 272Google Scholar

    [35]

    Xu P A, He Z X, Qiu T H, Ma H Y 2020 Opt. Express 28 12508Google Scholar

    [36]

    Shi P, Li N C, Wang S M, Liu Z, Ren M R, Ma H Y 2019 Sensors 19 5257Google Scholar

    [37]

    Ma H Y, Teng J K, Hu T, Shi P, Wang S M 2020 Wireless. Pers. Commun. https://doi.org/10.1088/1674-1056/ab773 e [quant-ph]

    [38]

    Zhao J B, Zhang W B, Ma Y L, Zhang X H, Ma H Y 2020 Appl. Sci. 10 1935Google Scholar

    [39]

    Ye C Q, Ye T Y 2019 Int. J. Theor. Phys. 58 1282Google Scholar

    [40]

    Qin L G, Wang Z Y, Wu S C, Gong S Q, Ma H Y, Jing J 2018 Opt. Commun. 410 102Google Scholar

    [41]

    Gong L, Qiu K, Deng C, Zhou N 2019 Opt. Laser Technol. 115 257Google Scholar

    [42]

    Chen X B, Wang Y L, Xu G, Yang Y Y 2019 IEEE Access 7 13634Google Scholar

    [43]

    Li H J, Chen X B, Wang Y L, Hou Y Y, Li J 2019 Quantum Inf. Process. 18 16Google Scholar

    [44]

    Facer C, Twamley J, Cresser J 2008 Phys. Rev. A 77 012334Google Scholar

    [45]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [46]

    龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学: 物理学 力学 天文学 41 332

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332

    [47]

    Kempf A, Portugal R 2009 Phys. Rev. A 79 052317Google Scholar

    [48]

    Childs A M 2010 Commun. Math. Phys. 294 281

    [49]

    刘欣, 梁燕霞, 聂敏, 魏媛媛 2017 光电子·激光 11 7

    Liu X, Liang Y X, Nie M, Wei Y Y 2017 J. Optoelectron. Laser 11 7

    [50]

    马鸿洋, 张鑫, 徐鹏翱, 刘芬, 范兴奎 2020 通信学报 41 190Google Scholar

    Ma H Y, Zhang X, Xu P A, Liu F, Fan X K 2020 J. Commun. 41 190Google Scholar

    [51]

    Diaconis P, Rockmore D 1990 J. Am. Math. Soc. 3 297Google Scholar

    [52]

    Hsiao H C, Kim T J, Perring A, Yamada A 2012 IEEE Secur. Privacy 19 506

  • 图 1  匿名量子通信方案流程图

    Fig. 1.  Flow chart of anonymous quantum communication scheme.

    图 2  量子压缩过程

    Fig. 2.  Quantum compression process.

    图 3  匿名量子通信过程

    Fig. 3.  Anonymous quantum communication process.

    图 4  环形结构

    Fig. 4.  Ring structure graph.

    图 5  量子漫步10步时概率分布图

    Fig. 5.  Probability distribution diagram for quantum walk in 10 steps.

    表 1  信息N和签名Sor的对应关系

    Table 1.  Correspondence between information N and Sor signature

    Alice信息序列$ N_{j} $ Bob签名序列$ Sor_{j} $
    00 00 或 01
    01 10 或 11
    10 00 或 11
    11 01 或 11
    下载: 导出CSV

    表 2  数值仿真结果

    Table 2.  Numerical simulation results

    时间 节点总数 位置 概率/%
    3 100 2 72.72
    10 500 6 45.31
    30 200 或 500 20 25.92
    50 200 或 500 34 18.95
    100 100 68 12.20
    200 200 138 10.81
    下载: 导出CSV
    Baidu
  • [1]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [2]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1892

    [3]

    胡钰安, 叶志清 2014 光子学报 43 827001Google Scholar

    Hu Y A, Ye Z Q 2014 Acta Photon. Sin. 43 827001Google Scholar

    [4]

    Unnikrishnan A, MacFarlane I J, Yi R, Diamanti E, Markham D, Kerenidis I 2019 Phys. Rev. Lett. 122 240510

    [5]

    Brassard G, Broadbent A, Fitzsimons J, Gambs S, Tapp A 2007 13 th International Conference on the Theory and Application of Cryptology and Information Security Kuching, Malaysia, December 2–6, 2007 pp460–473

    [6]

    陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 64 040301

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phy. Sin. 64 040301

    [7]

    聂敏, 王林飞, 杨光, 张美玲, 裴昌幸 2015 64 210303Google Scholar

    Nie M, Wang L F, Yang G, Zhang M L, Pei C X 2015 Acta Phy. Sin. 64 210303Google Scholar

    [8]

    Wehner S 2004 Ph. D. Dissertation (Holland: Universiteit van Amsterdam)

    [9]

    Chaum D 1988 J. Cryptol. 1 1Google Scholar

    [10]

    Chen X B, Sun Y R, Xu G 2019 Inf. Sci. 501 172Google Scholar

    [11]

    Xu G, Xiao K, Li Z P, Niu X X, Ryan M 2019 CMC-Comput. Mater. Con. 58 809

    [12]

    Lipinska V, Murta G, Wehner S 2018 Phys. Rev. A 98 052320Google Scholar

    [13]

    薛鹏, 郭光灿 2002 物理 31 385Google Scholar

    Xue P, Guo G C 2002 Physics 31 385Google Scholar

    [14]

    Boykin P O 2002 Ph. D. Dissertation (Los Angeles: University of California)

    [15]

    Christandl M, Wehner S 2005 11th International Conference on the Theory and Application of Cryptology and Information Chennai, India, December 4–8, 2005 pp217–235

    [16]

    Bouda J, Sprojcar J 2007 First International Conference on Quantum, Nano, and Micro Technologies Gosier, Guadeloupe, January 2–6, 2007 p12

    [17]

    Jiang L, He G Q, Nie D, Xiong J, Zeng G H 2012 Phys. Rev. A 85 042309Google Scholar

    [18]

    周南润, 龚黎华, 刘三秋, 曾贵华 2007 56 5066Google Scholar

    Zhou N R, Gong L H, Liu S Q, Zeng G H 2007 Acta Phys. Sin. 56 5066Google Scholar

    [19]

    Montanaro A 2016 NPJ Quantum Inf. 2 15023Google Scholar

    [20]

    杨乐, 李凯, 戴宏毅, 张明 2019 68 140301Google Scholar

    Yang L, Li K, Dai H Y, Zhang M 2019 Acta Phys. Sin. 68 140301Google Scholar

    [21]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310Google Scholar

    [22]

    Childs A M, Goldstone J 2004 Phys. Rev. A 70 022314Google Scholar

    [23]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing San Diego, America, June 9–11, 2003 pp59–68

    [24]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [25]

    Childs A M 2009 Phys. Rev. Lett. 102 180510

    [26]

    Zhan H 2019 Quantum Inf. Process. 18 369Google Scholar

    [27]

    Costa P, de Melo F, Portugal R 2019 Phys. Rev. A 100 042320Google Scholar

    [28]

    Di Molfetta G, Arrighi P 2020 Quantum Inf. Process. 19 47Google Scholar

    [29]

    Wong T G 2019 Phys. Rev. A 100 062325Google Scholar

    [30]

    Szigeti B E, Homa G, Zimborás Z, Barankai N 2019 Phys. Rev. A 100 062320Google Scholar

    [31]

    Wang Y, Shang Y, Xue P 2017 Quantum Inf. Process. 16 221Google Scholar

    [32]

    Feng Y Y, Shi R H, Shi J J, Zhou J, Guo Y 2019 Quantum Inf. Process. 18 154Google Scholar

    [33]

    Li H J, Li J, Xiang N, Zheng Y, Yang Y G, Naseri M 2019 Quantum Inf. Process. 18 316Google Scholar

    [34]

    Abd-El-Atty B, El-Latif A A A, Venegas-Andraca S E 2019 Quantum Inf. Process. 18 272Google Scholar

    [35]

    Xu P A, He Z X, Qiu T H, Ma H Y 2020 Opt. Express 28 12508Google Scholar

    [36]

    Shi P, Li N C, Wang S M, Liu Z, Ren M R, Ma H Y 2019 Sensors 19 5257Google Scholar

    [37]

    Ma H Y, Teng J K, Hu T, Shi P, Wang S M 2020 Wireless. Pers. Commun. https://doi.org/10.1088/1674-1056/ab773 e [quant-ph]

    [38]

    Zhao J B, Zhang W B, Ma Y L, Zhang X H, Ma H Y 2020 Appl. Sci. 10 1935Google Scholar

    [39]

    Ye C Q, Ye T Y 2019 Int. J. Theor. Phys. 58 1282Google Scholar

    [40]

    Qin L G, Wang Z Y, Wu S C, Gong S Q, Ma H Y, Jing J 2018 Opt. Commun. 410 102Google Scholar

    [41]

    Gong L, Qiu K, Deng C, Zhou N 2019 Opt. Laser Technol. 115 257Google Scholar

    [42]

    Chen X B, Wang Y L, Xu G, Yang Y Y 2019 IEEE Access 7 13634Google Scholar

    [43]

    Li H J, Chen X B, Wang Y L, Hou Y Y, Li J 2019 Quantum Inf. Process. 18 16Google Scholar

    [44]

    Facer C, Twamley J, Cresser J 2008 Phys. Rev. A 77 012334Google Scholar

    [45]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [46]

    龙桂鲁, 王川, 李岩松, 邓富国 2011 中国科学: 物理学 力学 天文学 41 332

    Long G L, Wang C, Li Y S, Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332

    [47]

    Kempf A, Portugal R 2009 Phys. Rev. A 79 052317Google Scholar

    [48]

    Childs A M 2010 Commun. Math. Phys. 294 281

    [49]

    刘欣, 梁燕霞, 聂敏, 魏媛媛 2017 光电子·激光 11 7

    Liu X, Liang Y X, Nie M, Wei Y Y 2017 J. Optoelectron. Laser 11 7

    [50]

    马鸿洋, 张鑫, 徐鹏翱, 刘芬, 范兴奎 2020 通信学报 41 190Google Scholar

    Ma H Y, Zhang X, Xu P A, Liu F, Fan X K 2020 J. Commun. 41 190Google Scholar

    [51]

    Diaconis P, Rockmore D 1990 J. Am. Math. Soc. 3 297Google Scholar

    [52]

    Hsiao H C, Kim T J, Perring A, Yamada A 2012 IEEE Secur. Privacy 19 506

  • [1] 陈越, 刘长杰, 郑伊佳, 曹原, 郭明轩, 朱佳莉, 周星宇, 郁小松, 赵永利, 王琴. 多域跨协议量子网络的域间密钥业务按需提供策略.  , 2024, 73(17): 170301. doi: 10.7498/aps.73.20240819
    [2] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案.  , 2024, 73(23): 1-14. doi: 10.7498/aps.73.20241382
    [3] 杨光, 刘琦, 聂敏, 刘原华, 张美玲. 基于极化-空间模超纠缠的量子网络多跳纠缠交换方法研究.  , 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [4] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子漫步的反馈搜索算法.  , 2021, (): . doi: 10.7498/aps.70.20211000
    [5] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储.  , 2019, 68(3): 030303. doi: 10.7498/aps.68.20182207
    [6] 杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁. 基于量子隐形传态的量子保密通信方案.  , 2017, 66(23): 230303. doi: 10.7498/aps.66.230303
    [7] 聂敏, 王林飞, 杨光, 张美玲, 裴昌幸. 基于分组交换的量子通信网络传输协议及性能分析.  , 2015, 64(21): 210303. doi: 10.7498/aps.64.210303
    [8] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型.  , 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [9] 李熙涵. 量子直接通信.  , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [10] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议.  , 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [11] 马鸿洋, 秦国卿, 范兴奎, 初鹏程. 噪声情况下的量子网络直接通信.  , 2015, 64(16): 160306. doi: 10.7498/aps.64.160306
    [12] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [13] 余旭涛, 徐进, 张在琛. 基于量子远程传态的无线自组织量子通信网络路由协议.  , 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [14] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议.  , 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [15] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [16] 付邦, 邓文基. 任意正多边形量子环自旋输运的普遍解.  , 2010, 59(4): 2739-2745. doi: 10.7498/aps.59.2739
    [17] 李鹏, 邓文基. 正多边形量子环自旋输运的严格解.  , 2009, 58(4): 2713-2719. doi: 10.7498/aps.58.2713
    [18] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [19] 王 剑, 陈皇卿, 张 权, 唐朝京. 多方控制的量子安全直接通信协议.  , 2007, 56(2): 673-677. doi: 10.7498/aps.56.673
    [20] 唐志列, 李 铭, 魏正军, 卢 非, 廖常俊, 刘颂豪. 相位-偏振编码的量子保密通信系统的研究.  , 2005, 54(6): 2534-2539. doi: 10.7498/aps.54.2534
计量
  • 文章访问数:  6813
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-04
  • 修回日期:  2020-05-01
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-08-20

/

返回文章
返回
Baidu
map