搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ZnO:In纳米棒阵列的X射线闪烁转换屏制备与性能研究

李乾利 胡亚华 马逸凡 孙志祥 王敏 刘小林 赵景泰 张志军

引用本文:
Citation:

基于ZnO:In纳米棒阵列的X射线闪烁转换屏制备与性能研究

李乾利, 胡亚华, 马逸凡, 孙志祥, 王敏, 刘小林, 赵景泰, 张志军

Preparation and properties for X-ray scintillation screen based on ZnO:In nanorod arrays

Li Qian-Li, Hu Ya-Hua, Ma Yi-Fan, Sun Zhi-Xiang, Wang Min, Liu Xiao-Lin, Zhao Jing-Tai, Zhang Zhi-Jun
PDF
HTML
导出引用
  • 为了满足高能物理和核物理领域在探究一些超快物理事件时, 对兼顾高时间和高空间分辨的X射线闪烁转换屏的迫切需求, 本文利用磁控溅射和水热反应法制备了ZnO:In纳米棒阵列X射线闪烁转换屏, 并对其进行氢气氛下的等离子处理优化其闪烁发光性能. X射线激发发射谱显示ZnO:In纳米棒阵列具有395 nm的紫外发光和450—750 nm的可见发光两个发光峰, 同时表明氢气氛等离子体处理可显著增强ZnO:In纳米棒阵列的紫外发光, 抑制其可见发光. 发光衰减时间测量表明, ZnO:In纳米棒阵列紫外发光衰减时间在亚纳秒级, 其可见发光衰减时间在纳秒级, 两者均可满足高时间分辨的X射线探测需求. 在上海同步辐射光源的X射线空间分辨率测试表明, 在能量为20 keV的X射线光束辐照下, 厚度为12 μm的ZnO:In纳米棒阵列作为X射线闪烁转换屏可达到1.5 μm的系统空间分辨率. 本研究表明利用ZnO:In纳米棒阵列作为X射线闪烁转换屏是实现兼顾高时间和高空间分辨的X射线探测与成像的一种可行方案.
    X-ray scintillation screens as the core component of X-ray imaging detectors have widespread applications in the medical imaging, security inspection, high energy physics, radiochemistry, and so on. For a long time, the development of X-ray scintillation screen mainly focuses on improving the light yield in order to enhance its detection efficiency. However, a novel tendency has recently emerged for ultrafast time performance of the X-ray imaging detector. The indium doping zinc oxide (ZnO:In) with high radiation hardness, higher light yield(>10000 photons/MeV) and subnanosecond decay time is a promising scintillation material for ultrafast detections. In order to satisfy the requirements of X-ray scintillation screens with ultrafast and high-spatial-resolution in the existing and upcoming high energy physics experiments, the ZnO:In nanorod arrays have been prepared on a 100-nm-thick ZnO-seeded substrate by hydrothermal reaction method and then treated by hydrogen plasma in present work. The results of SEM demonstrate the average diameter and length of the ZnO:In nanorods are about 0.5 and 12 μm, respectively. The XRD shows the ZnO:In nanorods are highly aligned perpendicular to the substrate along c-axis direction. The X-ray excited luminescence spectra show that two luminescence bands are observed, i.e. an ultraviolet emission peak located at about 395 nm and a visible emission band at 450–750 nm. It is particularly important to point out that hydrogen plasma treatment can enhance the ultraviolet emission of ZnO:In nanorod arrays and suppress its visible emission. The reason is attributed to the formation of shallow donors through hydrogen entering the ZnO and the combination of VO and Oi. In addition, the fluorescence decay times of the ultraviolet and visible emissions for the ZnO:In nanorod arrays are subnanosecond and nanosecond, respectively, satisfying the demand of the fast X-ray imaging. The spatial resolution of ZnO:In nanorod arrays has been characterized in X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility. Under excitation of the X-ray beam with the energy of 20 keV, a system spatial resolution of 1.5 μm could be achieved by using an 12 μm thickness ZnO:In nanorod arrays as the scintillation screen, which is exceeded the highest level had ever been reported on ZnO:In nanorod arrays scintillation screen. In conclusion, this present work shows that it is a feasible solution for X-ray detection and imaging with high temporal and spatial resolution by using ZnO:In nanorod arrays as the X-ray scintillation screen.
      通信作者: 张志军, zhangzhijun@shu.edu.cn
    • 基金项目: 国家级-基于人工表面等离激元的功能集成型辐射器研究(11905122)
      Corresponding author: Zhang Zhi-Jun, zhangzhijun@shu.edu.cn
    [1]

    Yanagida T 2018 Proc. Jpn. Acad., Ser. B 94 75Google Scholar

    [2]

    Dujardin C, Auffray E, Bourret-Courchesne E, Dorenbos P, Lecoq P, Nikl M, Vasil'ev A N, Yoshikawa A, Zhu R Y 2018 IEEE Trans. Nucl. Sci. 65 1977Google Scholar

    [3]

    Nikl M 2006 Meas. Sci. Technol. 17 R37Google Scholar

    [4]

    Barnes, C W, Fernández, J C, Hartsfield, T M, Sandberg, R L, Sheffield, R L, Tapia, J P, Wang, Z 2018 AIP Conf. Proc. 1979 160003Google Scholar

    [5]

    Turk G, Reverdin C, Gontier D, Darbon S, Dujardin C, Ledoux G, Hamel M, Simic V, Normand S 2010 Rev. Sci. Instrum. 81 10E509Google Scholar

    [6]

    Atanov N, Baranov V, Budagov J, Cervelli F, Colao F, Cordelli M, Corradi G, Davydov Y I, Falco S D, Diociaiuti E, Donati S, Donghia R, Echenard B, Giovannella S, Glagolev V, Grancagnolo F, Happacher F, Hitlin D G, Martini M, Miscetti S, Miyashita T, Morescalchi L, Murat P, Pedreschi E, Pezzullo G, Porter F, Raffaelli F, Ricci M, Saputi A, Sarra I, Spinella F, Tassielli G, Tereshchenko V, Usubov Z, Zhu R Y 2018 J. Instrum. 13 C02037Google Scholar

    [7]

    Zhu R Y 2019 J. Phys. Conf. Ser. 1162 012022Google Scholar

    [8]

    Hu C, Zhang L, Zhu RY, Chen A, Wang Z, Ying L, Yu Z 2018 IEEE Trans. Nucl. Sci. 65 2097Google Scholar

    [9]

    Simpson P J, Tjossem R, Hunt A W, Lynn K G, Munné V 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 505 82Google Scholar

    [10]

    Chen L, Ruan J, Xu M, He S, Hu J, Zhang Z, Liu J, Ouyang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 933 71Google Scholar

    [11]

    Grigorjeva L, Grube J, Bite I, Zolotarjovs A, Smits K, Millers D, Rodnyi P, Chernenko K 2019 Radiat. Meas. 123 69Google Scholar

    [12]

    邱志澈, 顾牡, 刘小林, 刘波, 黄世明, 倪晨 2016 光谱学与光谱分析 36 336Google Scholar

    Qiu Z C, Gu M, Liu X L, Liu B, Huang S M, Ni C 2016 Spectrosc. Spect. Anal. 36 336Google Scholar

    [13]

    Liu S, Gu M, Chen H, Sun Z, Liu X, Liu B, Huang S, Zhang J 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 903 18Google Scholar

    [14]

    Li Q, Liu X, Gu M, Li F, Zhang J, Wu Q, Huang S, Liu S 2018 Appl. Surf. Sci. 433 815Google Scholar

    [15]

    Kobayashi M, Komori J, Shimidzu K, Izaki M, Uesugi K, Takeuchi A, Suzuki Y 2015 Appl. Phys. Lett. 106 081909Google Scholar

    [16]

    Izaki M, Kobayashi M, Shinagawa T, Koyama T, Uesugi K, Takeuchi A 2017 Phys. Status Solidi A 214 1700285Google Scholar

    [17]

    Li Q, Hao S, An R, Wang M, Sun Z, Wu Q, Gu M, Zhao J, Liu X, Zhang Z 2019 Appl. Surf. Sci. 493 1299Google Scholar

    [18]

    倪晨, 顾牡, 王迪, 曹顿华, 刘小林, 黄世明 2009 光谱学与光谱分析 29 2291Google Scholar

    Ni C, Gu M, Wang D, Cao D H, Liu X L, Huang S M 2009 Spectrosc. Spect. Anal. 29 2291Google Scholar

    [19]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar

    [20]

    Li Q, Liu X, Gu M, Huang S, Ni C, Liu B, Hu Y, Sun S, Zhang Z 2016 IEEE Trans. Nucl. Sci. 63 471Google Scholar

    [21]

    Li Q, Liu X, Gu M, Huang S, Zhang J, Ni C, Liu B, Hu Y, Wu Q, Zhao S 2016 Superlattices Microstruct. 98 351Google Scholar

    [22]

    Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 045504Google Scholar

    [23]

    Lavrov E V, Herklotz F, Weber J 2009 Phys. Rev. B 79 165210Google Scholar

    [24]

    Kano M, Wakamiya A, Yamanoi K, Sakai K, Takeda K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Fukuda T 2012 IEEE Trans. Nucl. Sci. 59 2290Google Scholar

    [25]

    Yamanoi K, Sakai K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Kano M, Wakamiya A, Fukuda T, Nagasono M, Togashi T, Matsubara S, Tono K, Higashiya A, Yabashi M, Kimura H, Ohashi H, Ishikawa T 2012 IEEE Trans. Nucl. Sci. 59 2298Google Scholar

    [26]

    郭智敏, 倪培君 2010 兵器材料科学与工程 33 113Google Scholar

    Guo Z M, Ni P J, 2010 Ordnance Mater. Sci. Eng. 33 113Google Scholar

    [27]

    Chen H, Gu M, Sun Z, Liu X, Liu B, Zhang J, Huang S, Ni C 2019 Opt. Express 27 14871Google Scholar

    [28]

    Sowa K M, Last A, Korecki P 2017 Sci. Rep. 7 44944Google Scholar

    [29]

    Samei E, Flynn M J, Reimann D A 1998 Med. Phys. 25 102Google Scholar

    [30]

    Michail C, Valais I, Martini N, Koukou V, Kalyvas N, Bakas A, Kandarakis I, Fountos G 2016 Radiat. Meas. 94 8Google Scholar

  • 图 1  ZnO:In纳米棒阵列的制备流程示意图

    Fig. 1.  The schematic illustration of the fabrication process of ZnO:In nanorod arrays.

    图 2  ZnO:In纳米棒阵列的SEM (a)截面; (b)顶端; (c)表面; (d)斜视图

    Fig. 2.  SEM images of ZnO:In nanorod arrays: (a) Cross-sectional; (b) top; (c) surface; (d) oblique views.

    图 3  氢气氛等离子处理前后ZnO:In纳米棒阵列的XRD谱图

    Fig. 3.  XRD patterns of the ZnO:In nanorod arrays before and after hydrogen plasma treatment.

    图 4  氢气氛等离子处理前后ZnO:In纳米棒阵列的XEL光谱

    Fig. 4.  XEL spectra of the ZnO:In nanorod arrays before and after hydrogen plasma treatment.

    图 5  (a) ZnO:In纳米棒阵列的紫外发光衰减时间曲线(λex = 325 nm, λem = 395 nm); (b)可见发光衰减时间曲线(λex = 325 nm, λem = 530 nm)

    Fig. 5.  The fluorescence decay curves of (a) ultravioletemission (λex = 325 nm, λem = 395 nm) and (b) visible emission (λex = 325 nm, λem = 530 nm) for the ZnO:In nanorod arrays.

    图 6  上海同步辐射光源BL13 W1线站的X射线成像测量设备示意图

    Fig. 6.  Schematic diagram of the synchrotron radiation X-ray imaging measurement setup at BL13 W1, SSRF.

    图 7  (a) JIMA RT RC-02型微米分辨率板实物图, 内部结构图示意图和微米分辨图案; 基于ZnO:In纳米棒阵列做闪烁转换屏的(b) 3 μm和(c) 1.5 μm的X射线成像图

    Fig. 7.  (a) Physical, Schematic diagram of internal structure and Micron-resolved pattern of JIMA RT-02 micro-resolution plates; the X-ray images of (b) 3 μm and (c) 1.5 μm basedonZnO:In nanorod arrays as the scintillation screen.

    图 8  ZnO:In纳米棒阵列的X射线成像系统的(a) MTF曲线和(b) DQE曲线

    Fig. 8.  (a) MTF and (b) DQE curves of the X-ray imaging system with ZnO:In nanorod arrays.

    Baidu
  • [1]

    Yanagida T 2018 Proc. Jpn. Acad., Ser. B 94 75Google Scholar

    [2]

    Dujardin C, Auffray E, Bourret-Courchesne E, Dorenbos P, Lecoq P, Nikl M, Vasil'ev A N, Yoshikawa A, Zhu R Y 2018 IEEE Trans. Nucl. Sci. 65 1977Google Scholar

    [3]

    Nikl M 2006 Meas. Sci. Technol. 17 R37Google Scholar

    [4]

    Barnes, C W, Fernández, J C, Hartsfield, T M, Sandberg, R L, Sheffield, R L, Tapia, J P, Wang, Z 2018 AIP Conf. Proc. 1979 160003Google Scholar

    [5]

    Turk G, Reverdin C, Gontier D, Darbon S, Dujardin C, Ledoux G, Hamel M, Simic V, Normand S 2010 Rev. Sci. Instrum. 81 10E509Google Scholar

    [6]

    Atanov N, Baranov V, Budagov J, Cervelli F, Colao F, Cordelli M, Corradi G, Davydov Y I, Falco S D, Diociaiuti E, Donati S, Donghia R, Echenard B, Giovannella S, Glagolev V, Grancagnolo F, Happacher F, Hitlin D G, Martini M, Miscetti S, Miyashita T, Morescalchi L, Murat P, Pedreschi E, Pezzullo G, Porter F, Raffaelli F, Ricci M, Saputi A, Sarra I, Spinella F, Tassielli G, Tereshchenko V, Usubov Z, Zhu R Y 2018 J. Instrum. 13 C02037Google Scholar

    [7]

    Zhu R Y 2019 J. Phys. Conf. Ser. 1162 012022Google Scholar

    [8]

    Hu C, Zhang L, Zhu RY, Chen A, Wang Z, Ying L, Yu Z 2018 IEEE Trans. Nucl. Sci. 65 2097Google Scholar

    [9]

    Simpson P J, Tjossem R, Hunt A W, Lynn K G, Munné V 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 505 82Google Scholar

    [10]

    Chen L, Ruan J, Xu M, He S, Hu J, Zhang Z, Liu J, Ouyang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 933 71Google Scholar

    [11]

    Grigorjeva L, Grube J, Bite I, Zolotarjovs A, Smits K, Millers D, Rodnyi P, Chernenko K 2019 Radiat. Meas. 123 69Google Scholar

    [12]

    邱志澈, 顾牡, 刘小林, 刘波, 黄世明, 倪晨 2016 光谱学与光谱分析 36 336Google Scholar

    Qiu Z C, Gu M, Liu X L, Liu B, Huang S M, Ni C 2016 Spectrosc. Spect. Anal. 36 336Google Scholar

    [13]

    Liu S, Gu M, Chen H, Sun Z, Liu X, Liu B, Huang S, Zhang J 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 903 18Google Scholar

    [14]

    Li Q, Liu X, Gu M, Li F, Zhang J, Wu Q, Huang S, Liu S 2018 Appl. Surf. Sci. 433 815Google Scholar

    [15]

    Kobayashi M, Komori J, Shimidzu K, Izaki M, Uesugi K, Takeuchi A, Suzuki Y 2015 Appl. Phys. Lett. 106 081909Google Scholar

    [16]

    Izaki M, Kobayashi M, Shinagawa T, Koyama T, Uesugi K, Takeuchi A 2017 Phys. Status Solidi A 214 1700285Google Scholar

    [17]

    Li Q, Hao S, An R, Wang M, Sun Z, Wu Q, Gu M, Zhao J, Liu X, Zhang Z 2019 Appl. Surf. Sci. 493 1299Google Scholar

    [18]

    倪晨, 顾牡, 王迪, 曹顿华, 刘小林, 黄世明 2009 光谱学与光谱分析 29 2291Google Scholar

    Ni C, Gu M, Wang D, Cao D H, Liu X L, Huang S M 2009 Spectrosc. Spect. Anal. 29 2291Google Scholar

    [19]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H 2005 J. Appl. Phys. 98 041301Google Scholar

    [20]

    Li Q, Liu X, Gu M, Huang S, Ni C, Liu B, Hu Y, Sun S, Zhang Z 2016 IEEE Trans. Nucl. Sci. 63 471Google Scholar

    [21]

    Li Q, Liu X, Gu M, Huang S, Zhang J, Ni C, Liu B, Hu Y, Wu Q, Zhao S 2016 Superlattices Microstruct. 98 351Google Scholar

    [22]

    Hofmann D M, Hofstaetter A, Leiter F, Zhou H, Henecker F, Meyer B K, Orlinskii S B, Schmidt J, Baranov P G 2002 Phys. Rev. Lett. 88 045504Google Scholar

    [23]

    Lavrov E V, Herklotz F, Weber J 2009 Phys. Rev. B 79 165210Google Scholar

    [24]

    Kano M, Wakamiya A, Yamanoi K, Sakai K, Takeda K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Fukuda T 2012 IEEE Trans. Nucl. Sci. 59 2290Google Scholar

    [25]

    Yamanoi K, Sakai K, Cadatal-Raduban M, Nakazato T, Shimizu T, Sarukura N, Kano M, Wakamiya A, Fukuda T, Nagasono M, Togashi T, Matsubara S, Tono K, Higashiya A, Yabashi M, Kimura H, Ohashi H, Ishikawa T 2012 IEEE Trans. Nucl. Sci. 59 2298Google Scholar

    [26]

    郭智敏, 倪培君 2010 兵器材料科学与工程 33 113Google Scholar

    Guo Z M, Ni P J, 2010 Ordnance Mater. Sci. Eng. 33 113Google Scholar

    [27]

    Chen H, Gu M, Sun Z, Liu X, Liu B, Zhang J, Huang S, Ni C 2019 Opt. Express 27 14871Google Scholar

    [28]

    Sowa K M, Last A, Korecki P 2017 Sci. Rep. 7 44944Google Scholar

    [29]

    Samei E, Flynn M J, Reimann D A 1998 Med. Phys. 25 102Google Scholar

    [30]

    Michail C, Valais I, Martini N, Koukou V, Kalyvas N, Bakas A, Kandarakis I, Fountos G 2016 Radiat. Meas. 94 8Google Scholar

  • [1] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法.  , 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [2] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学.  , 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [3] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像.  , 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [4] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量.  , 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [5] 范伟, 谷渝秋, 朱斌, 税敏, 单连强, 杜赛, 辛建婷, 赵宗清, 周维民, 曹磊峰, 张学如, 王玉晓. 一种超快时间分辨速度干涉仪的设计和理论研究.  , 2014, 63(6): 060703. doi: 10.7498/aps.63.060703
    [6] 陈火耀, 刘正坤, 王庆博, 易涛, 杨国洪, 洪义麟, 付绍军. 软X射线全息平焦场光栅的条纹弯曲现象及其对光谱分辨率的影响.  , 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [7] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法.  , 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [8] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦.  , 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [9] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理.  , 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [10] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统.  , 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [11] 胡浩丰, 王晓雷, 郭文刚, 翟宏琛, 王攀. 强飞秒激光烧蚀石英玻璃的超快时间分辨光学诊断.  , 2011, 60(1): 017901. doi: 10.7498/aps.60.017901
    [12] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究.  , 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [13] 公茂刚, 许小亮, 曹自立, 刘远越, 朱海明. 两步法制备超疏水性ZnO纳米棒薄膜.  , 2009, 58(3): 1885-1889. doi: 10.7498/aps.58.1885
    [14] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化.  , 2009, 58(8): 5539-5545. doi: 10.7498/aps.58.5539
    [15] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性.  , 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [16] 王 烨, 许小亮, 谢炜宇, 汪壮兵, 吕 柳, 赵亚丽. 两步法制备空间取向高度一致的ZnO纳米棒阵列.  , 2008, 57(4): 2582-2586. doi: 10.7498/aps.57.2582
    [17] 谢红兰, 高鸿奕, 陈建文, 王寯越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展. 具有原子分辨率的x射线荧光全息术的数值模拟研究.  , 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
    [18] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法.  , 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
    [19] 朱佩平, 肖体乔, 陈建文, 徐至展. X射线全息记录过程中影响分辨率的主要因素分析.  , 1994, 43(6): 879-888. doi: 10.7498/aps.43.879
    [20] 陆坤权, 常龙存, 赵雅琴. X射线连续谱晶体单色器的分辨率.  , 1983, 32(12): 1505-1514. doi: 10.7498/aps.32.1505
计量
  • 文章访问数:  9862
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-05-20

/

返回文章
返回
Baidu
map