搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电力电子化电力系统稳定的问题及挑战:以暂态稳定比较为例

杨子千 马锐 程时杰 占萌

引用本文:
Citation:

电力电子化电力系统稳定的问题及挑战:以暂态稳定比较为例

杨子千, 马锐, 程时杰, 占萌

Problems and challenges of power-electronic-based power system stability: A case study of transient stability comparison

Yang Zi-Qian, Ma Rui, Cheng Shi-Jie, Zhan Meng
PDF
HTML
导出引用
  • 随着电力电子技术的进步和环境保护对清洁能源的要求, 以同步发电机为主的传统电力系统正向着多样化电力电子装备为主的电力系统转变, 由此电力系统正面临着百年来未有之大变局. 近年来, 国内外不断报道出以电力电子装备为主的新能源基地和传统高压直流等机理不明的电力事故, 严重威胁了电力系统安全稳定运行. 针对上述问题, 本文首先介绍传统电力系统暂态稳定分析的主要方法, 接着分析了典型故障场景下简单电力电子化电力系统的动力学行为, 并建立了同时包含电力电子设备与传统同步机的多机耦合系统模型, 最后总结了电力电子化电力系统的非线性、多时标、复杂性的本质特点, 归纳其暂态稳定的基本问题与挑战以及对未来研究方向的展望, 希望引起复杂系统和统计物理背景的研究人员的广泛兴趣.
    With the development of power electronic technology and requirement for clean energy, the traditional power systems which are dominated by synchronous generators are gradually changing into the power-electronic-based power systems with diversified power electronic equipment. The power systems are facing a great revolution in their primary equipment, and this has not happened in the past one hundred years. In recent years, with great increasing penetration of power electronic devices into power grids, the large-scale blackouts caused by power electronic devices have been reported, which seriously threatens the safe and stable operation of power systems. Under the above background, in this paper we first introduce several methods of analyzing the traditional power system transient stability from the equal area criterion for the single machine infinite bus system to several Lyapunov function based direct methods for multi-machine systems. Then we introduce some of our recent work on the nonlinear modeling and analysis of a key component of power-electronic-based power systems, voltage source converter (VSC), and propose a multiple machine system model including power electronic equipment and traditional synchronous machines. Finally, we illustrate the transient characteristics of the power electronic devices, and summarize the basic problems and challenges for the transient stability of power-electronic-based power systems. We hope that these basic problems in power-electronic-based power system dynamics including nonlinearity, multi-time-scale, and complexity could arouse the general interest of researchers in the fields of complex systems and statistical mechanics.
      通信作者: 占萌, zhanmeng@hust.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0902000)、国家电网公司科技项目(批准号: SGXJ0000KXJS1700841)和国家自然科学基金国际(地区)组织间合作与交流项目(批准号: 11861131011)资助的课题
      Corresponding author: Zhan Meng, zhanmeng@hust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0902000), Science and Technology Project of State Grid (Grant No. SGXJ0000KXJS1700841) and the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 11861131011)
    [1]

    周孝信, 陈树勇, 鲁宗相, 黄彦浩, 马士聪, 赵强 2018 电机工程学报 38 1893Google Scholar

    Zhou X X, Chen S Y, Lu Z X, Huang Y H, Ma S C 2018 Proceedings of the CSEE 38 1893Google Scholar

    [2]

    袁小明, 程时杰, 胡家兵 2016 电机工程学报 36 5145Google Scholar

    Yuan X M, Cheng S J, Hu J B 2016 Proceedings of the CSEE 36 5145Google Scholar

    [3]

    胡家兵, 袁小明, 程时杰 2019 电机工程学报 39 5457Google Scholar

    Hu J B, Yuan X M, Cheng S J 2019 Proceedings of the CSEE 39 5457Google Scholar

    [4]

    Biaabjerg F, Ma K 2013 IEEE J. Emerging Sel. Top. Power Electron. 1 139Google Scholar

    [5]

    Biaabjerg F, Teodorescu R, Liserre M, Timbus A V 2006 IEEE Trans. Ind. Electron. 53 1398

    [6]

    National Grid ESO LFDD 09/08/2019 Incident Report https://www.nationalgrideso.com/document/152346/download [2019-11-10]

    [7]

    Kundur P, Balu N J, Lauby M G 1994 Power System Stability and Control (Vol. 1) (New York: McGraw-hill) p827

    [8]

    Anderson P M, Fouad A A 2002 Power System Control and Stability (Vol. 2) (Boloken: John Wiley & Sons) p13

    [9]

    傅书逷, 倪以信, 薛禹胜 1999 直接法稳定分析(北京: 中国电力出版社) 第25页

    Fu S T, Ni Y Y, Xue Y S 1999 Direct Method Stability Analysis (Vol. 1) (Beijing: China Electric Power Press) p25 (in Chinese)

    [10]

    刘笙, 陈陈 2014 电力系统暂态稳定的能量函数分析: 网络结构保持模型(北京: 科学出版社) 第75页

    Liu S, Chen C 2014 Energy Function Analysis of Power Aystem Transient Atability: Network Structure Maintenance Model (Vol. 1) (Beijing: Science Press) p75 (in Chinese)

    [11]

    Chiang H D 2010 Direct Methods for Stability Analysis of Electric Power Systems (Vol. 1) (Beijing: Science Press) p60

    [12]

    Kakimoto N, Ohsawa Y, Hayashi M 1978 Trans. IEE of Japan 98 62

    [13]

    Llamas A, Lopez J, Mili L, Phadke A, Thorp J 1995 IEEE Trans. Power Syst 10 210

    [14]

    Xue Y, Cutsem T V, Ribbens-Pavella V 1988 IEEE Trans. Power Syst. 3 400Google Scholar

    [15]

    Kalcon G O, Adam G P, Anaya-Lara O, Lo S, Uhlen K 2012 IEEE Trans. Power Syst. 27 1818

    [16]

    Harnefors L, Bongiorno M, Lundberg S 2007 IEEE Trans. Ind. Electron. 54 3323Google Scholar

    [17]

    Sun J 2011 IEEE Trans. Power Electron. 26 3075Google Scholar

    [18]

    Rygg A, Molinas M, Zhang C, Cai X 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 1383Google Scholar

    [19]

    Huang Y, Yuan X, Hu J, Zhou P 2015 IEEE J. Emerging Sel. Top. Power Electron. 3 1193Google Scholar

    [20]

    Yuan H, Yuan X, Hu J 2017 IEEE Trans. Power Syst. 32 3981Google Scholar

    [21]

    Yang Z, Mei C, Chen S, Zhan M 2020 IEEE J. Emerging Sel. Top. Power Electron. (in press)Google Scholar

    [22]

    Kabalan M, Singh P, Niebur D 2016 IEEE Trans. Smart Grid 8 2287

    [23]

    Wu H, Wang X 2018 IEEE Trans. Ind. Electron. 66 6473

    [24]

    Huang L, Xin H, Wang Z, Zhang L, Wu K, Hu J 2017 IEEE Trans. Smart Grid 10 578

    [25]

    Huang M, Wong S C, Chi K T, Ruan X 2012 IEEE Trans. Circuits Syst. I, Reg. Papers 60 1062

    [26]

    Huang M, Peng Y, Chi K T, Liu Y, Sun J, Zha X 2017 IEEE Trans. Power Electron. 32 8868Google Scholar

    [27]

    Zhang C, Cai X, Li Z, Rygg A, Molinas M 2017 IET Power Electron. 10 894Google Scholar

    [28]

    Sun J, Wang G, Du X, Wang H 2018 IEEE Trans. Power Electron. 34 3025

    [29]

    Ying J, Yuan X X, Hu J B 2017 IEEE Trans. Energy Convers. 32 1502Google Scholar

    [30]

    Vittal E, O’Malley M, Keane A 2010 IEEE Trans. Power Syst. 25 433

    [31]

    Gautam D, Vittal V, Harbour T 2009 IEEE Trans. Power Syst. 24 1426

    [32]

    Hu Q, Fu L, Ma F, Ji F 2019 IEEE Trans. Power Syst. 34 3220Google Scholar

    [33]

    李明节, 于钊, 许涛, 贺静波, 王超, 谢小荣, 刘纯 2017 电网技术 41 1035Google Scholar

    Li M J, Yu Z, Xu T, He J B, Wang C, Xie X X, Liu C 2017 Proceedings of the CSEE 41 1035Google Scholar

    [34]

    Menck P J, Heitzig J, Kurths J, Schellnhuber H J 2014 Nat.Commun. 5 3969Google Scholar

    [35]

    Schultz P, Heitzig J, Kurths J 2014 New J.Phys. 16 125001Google Scholar

    [36]

    Rohden M, Sorge A, Timme M, Witthaut D 2012 Phys. Rev. Lett. 109 064101Google Scholar

    [37]

    Schafer B, Witthaut D, Timme M, Latora V 2018 Nat. Commun. 9 1975Google Scholar

    [38]

    Motter A E, Myers S A, Anghel M, Nishikawa T 2013 Nat. Phys. 9 191Google Scholar

    [39]

    Yang Y, Nishikawa T, Motter A E 2017 Science 358 3184Google Scholar

    [40]

    Dorfler F, Chertkov M, Bullo F 2013 PNAS 110 2005Google Scholar

    [41]

    Grob D, Arghir C, Dorfler F 2018 Automatica 90 248Google Scholar

    [42]

    Carareto R, Baptista M S, Grebogi C 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1035Google Scholar

    [43]

    Ma J, Sun Y, Yuan X, Kurths J, Zhan M 2016 PLoS ONE 11 e0165943Google Scholar

    [44]

    Sun Y, Kurths J, and Zhan M 2017 CHAOS 27 083116Google Scholar

    [45]

    Y Sun, J Ma, J Kurths, M Zhan 2018 Proc. R. Soc. London, Ser. A 474 20170733Google Scholar

    [46]

    M He, W He, J Hu, X Yuan, M Zhan 2019 Nonlinear Dynamics 95 1965Google Scholar

    [47]

    Q Yue, J Yu, Zhan M 2019 IET RPG 2019 International Conference on Renewable Power Generation Shanghai, China, October 24–25, 2019 p294

    [48]

    Qiu Q, Ma R, Kurths J, Zhan M 2020 Chaos 30 013110Google Scholar

    [49]

    Yang Z Q, Ma R, Chen S, Zhan M 2020 IEEE J. Emerging. Sel. Top. Power Electron. (in press)Google Scholar

    [50]

    Ma R, Yang Z, Cheng S, Zhan M 2020 Sustained Oscillations and Bifurcations in Three-phase VSC Tied to AC Gird (submitted) IET Renewable Power Generation

    [51]

    Strogatz S H 2018 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Vol. 2) (Boulder: Westview Press) p241

    [52]

    Kuehn C 2015 Multiple Time Scale Dynamics (Vol. 1) (Berlin: Springer International Publishing) p53

  • 图 1  电力电子化电力系统示意图

    Fig. 1.  Schematic diagram of power electronic dominated power systems

    图 2  一台同步发电机经变压器升压后串联双回线路接入无穷大电网的示意图

    Fig. 2.  Schematic show for a single-machine-infinite-bus (SMIB) system

    图 3  系统的功率特性曲线[7]

    Fig. 3.  Power-angle relationship[7].

    图 4  (a) 简单系统在故障前、故障中、故障后的三条不同功率特性曲线; (b) 暂态稳定(红色曲线)和临界稳定(蓝色曲线)情况下的功角的时域波形[9]

    Fig. 4.  (a) Power-angle relationships for three different states of before-fault ($ P_{\rm {I}} $), during-fault ($ P_{\rm {II}} $), and post-fault ($ P_{\rm {III}} $); (b) time-domain responses of the power angle when the system are stable (red curve) and critical stable (blue curve), respectively[9]

    图 5  (a)势能函数曲线;(b)不同状态下的轨迹[10]

    Fig. 5.  (a) Potential energy function curve; (b) trajectories in state space corresponding different states: stable, critically stable, and unstable[10].

    图 6  VSC单机并网系统控制框图

    Fig. 6.  Schematic show of a grid-connected VSC system and its controllers

    图 7  VSC电压时间尺度模型系统控制框图

    Fig. 7.  Schematic show of the control diagram of the VSC system within the voltage timescale

    图 8  参数$ U_{\rm {g}} $变化时的分岔图(包含亚临界霍普夫分岔和广义鞍结点分岔). 小图中显示$ U_{\rm {g}} $减小时经过霍普夫分岔点的特征根轨迹

    Fig. 8.  Bifurcation diagram with the variation of $ U_{\rm {g}} $ including a sub-critical Hopf bifurcation and a generalized saddle-node bifurcation. The sub-figure shows the eigenvalue traces when $ U_{\rm {g}} $ decreases and passes through the Hopf bifurcation point

    图 9  VSC电压时间尺度模型与详细模型在暂态故障后的响应对比

    Fig. 9.  Response comparison between the voltage timescale VSC system and the detailed VSC system after transient fault

    图 10  (a)VSC与同步机多机耦合系统和(b)其微分代数方程组中变量传递关系

    Fig. 10.  (a) A multi-machine power system with VSC devices and synchronous generators and (b) its variable relations in differential algebraic equations

    表 1  电力电子化系统与传统电力系统暂态问题初步比较

    Table 1.  Comparison of transient problems between Power-electronic-based power systems and traditional power systems

    复杂性 时间尺度 系统阶数
    传统电力系统 非线性项较少且单一 机电与电磁时间尺度较好分离 同步机二阶模型
    电力电子化电力系统 非线性项分布广泛且复杂 多时间尺度间强耦合 装备多样化且高阶
    下载: 导出CSV
    Baidu
  • [1]

    周孝信, 陈树勇, 鲁宗相, 黄彦浩, 马士聪, 赵强 2018 电机工程学报 38 1893Google Scholar

    Zhou X X, Chen S Y, Lu Z X, Huang Y H, Ma S C 2018 Proceedings of the CSEE 38 1893Google Scholar

    [2]

    袁小明, 程时杰, 胡家兵 2016 电机工程学报 36 5145Google Scholar

    Yuan X M, Cheng S J, Hu J B 2016 Proceedings of the CSEE 36 5145Google Scholar

    [3]

    胡家兵, 袁小明, 程时杰 2019 电机工程学报 39 5457Google Scholar

    Hu J B, Yuan X M, Cheng S J 2019 Proceedings of the CSEE 39 5457Google Scholar

    [4]

    Biaabjerg F, Ma K 2013 IEEE J. Emerging Sel. Top. Power Electron. 1 139Google Scholar

    [5]

    Biaabjerg F, Teodorescu R, Liserre M, Timbus A V 2006 IEEE Trans. Ind. Electron. 53 1398

    [6]

    National Grid ESO LFDD 09/08/2019 Incident Report https://www.nationalgrideso.com/document/152346/download [2019-11-10]

    [7]

    Kundur P, Balu N J, Lauby M G 1994 Power System Stability and Control (Vol. 1) (New York: McGraw-hill) p827

    [8]

    Anderson P M, Fouad A A 2002 Power System Control and Stability (Vol. 2) (Boloken: John Wiley & Sons) p13

    [9]

    傅书逷, 倪以信, 薛禹胜 1999 直接法稳定分析(北京: 中国电力出版社) 第25页

    Fu S T, Ni Y Y, Xue Y S 1999 Direct Method Stability Analysis (Vol. 1) (Beijing: China Electric Power Press) p25 (in Chinese)

    [10]

    刘笙, 陈陈 2014 电力系统暂态稳定的能量函数分析: 网络结构保持模型(北京: 科学出版社) 第75页

    Liu S, Chen C 2014 Energy Function Analysis of Power Aystem Transient Atability: Network Structure Maintenance Model (Vol. 1) (Beijing: Science Press) p75 (in Chinese)

    [11]

    Chiang H D 2010 Direct Methods for Stability Analysis of Electric Power Systems (Vol. 1) (Beijing: Science Press) p60

    [12]

    Kakimoto N, Ohsawa Y, Hayashi M 1978 Trans. IEE of Japan 98 62

    [13]

    Llamas A, Lopez J, Mili L, Phadke A, Thorp J 1995 IEEE Trans. Power Syst 10 210

    [14]

    Xue Y, Cutsem T V, Ribbens-Pavella V 1988 IEEE Trans. Power Syst. 3 400Google Scholar

    [15]

    Kalcon G O, Adam G P, Anaya-Lara O, Lo S, Uhlen K 2012 IEEE Trans. Power Syst. 27 1818

    [16]

    Harnefors L, Bongiorno M, Lundberg S 2007 IEEE Trans. Ind. Electron. 54 3323Google Scholar

    [17]

    Sun J 2011 IEEE Trans. Power Electron. 26 3075Google Scholar

    [18]

    Rygg A, Molinas M, Zhang C, Cai X 2016 IEEE J. Emerging Sel. Top. Power Electron. 4 1383Google Scholar

    [19]

    Huang Y, Yuan X, Hu J, Zhou P 2015 IEEE J. Emerging Sel. Top. Power Electron. 3 1193Google Scholar

    [20]

    Yuan H, Yuan X, Hu J 2017 IEEE Trans. Power Syst. 32 3981Google Scholar

    [21]

    Yang Z, Mei C, Chen S, Zhan M 2020 IEEE J. Emerging Sel. Top. Power Electron. (in press)Google Scholar

    [22]

    Kabalan M, Singh P, Niebur D 2016 IEEE Trans. Smart Grid 8 2287

    [23]

    Wu H, Wang X 2018 IEEE Trans. Ind. Electron. 66 6473

    [24]

    Huang L, Xin H, Wang Z, Zhang L, Wu K, Hu J 2017 IEEE Trans. Smart Grid 10 578

    [25]

    Huang M, Wong S C, Chi K T, Ruan X 2012 IEEE Trans. Circuits Syst. I, Reg. Papers 60 1062

    [26]

    Huang M, Peng Y, Chi K T, Liu Y, Sun J, Zha X 2017 IEEE Trans. Power Electron. 32 8868Google Scholar

    [27]

    Zhang C, Cai X, Li Z, Rygg A, Molinas M 2017 IET Power Electron. 10 894Google Scholar

    [28]

    Sun J, Wang G, Du X, Wang H 2018 IEEE Trans. Power Electron. 34 3025

    [29]

    Ying J, Yuan X X, Hu J B 2017 IEEE Trans. Energy Convers. 32 1502Google Scholar

    [30]

    Vittal E, O’Malley M, Keane A 2010 IEEE Trans. Power Syst. 25 433

    [31]

    Gautam D, Vittal V, Harbour T 2009 IEEE Trans. Power Syst. 24 1426

    [32]

    Hu Q, Fu L, Ma F, Ji F 2019 IEEE Trans. Power Syst. 34 3220Google Scholar

    [33]

    李明节, 于钊, 许涛, 贺静波, 王超, 谢小荣, 刘纯 2017 电网技术 41 1035Google Scholar

    Li M J, Yu Z, Xu T, He J B, Wang C, Xie X X, Liu C 2017 Proceedings of the CSEE 41 1035Google Scholar

    [34]

    Menck P J, Heitzig J, Kurths J, Schellnhuber H J 2014 Nat.Commun. 5 3969Google Scholar

    [35]

    Schultz P, Heitzig J, Kurths J 2014 New J.Phys. 16 125001Google Scholar

    [36]

    Rohden M, Sorge A, Timme M, Witthaut D 2012 Phys. Rev. Lett. 109 064101Google Scholar

    [37]

    Schafer B, Witthaut D, Timme M, Latora V 2018 Nat. Commun. 9 1975Google Scholar

    [38]

    Motter A E, Myers S A, Anghel M, Nishikawa T 2013 Nat. Phys. 9 191Google Scholar

    [39]

    Yang Y, Nishikawa T, Motter A E 2017 Science 358 3184Google Scholar

    [40]

    Dorfler F, Chertkov M, Bullo F 2013 PNAS 110 2005Google Scholar

    [41]

    Grob D, Arghir C, Dorfler F 2018 Automatica 90 248Google Scholar

    [42]

    Carareto R, Baptista M S, Grebogi C 2013 Commun. Nonlinear Sci. Numer. Simul. 18 1035Google Scholar

    [43]

    Ma J, Sun Y, Yuan X, Kurths J, Zhan M 2016 PLoS ONE 11 e0165943Google Scholar

    [44]

    Sun Y, Kurths J, and Zhan M 2017 CHAOS 27 083116Google Scholar

    [45]

    Y Sun, J Ma, J Kurths, M Zhan 2018 Proc. R. Soc. London, Ser. A 474 20170733Google Scholar

    [46]

    M He, W He, J Hu, X Yuan, M Zhan 2019 Nonlinear Dynamics 95 1965Google Scholar

    [47]

    Q Yue, J Yu, Zhan M 2019 IET RPG 2019 International Conference on Renewable Power Generation Shanghai, China, October 24–25, 2019 p294

    [48]

    Qiu Q, Ma R, Kurths J, Zhan M 2020 Chaos 30 013110Google Scholar

    [49]

    Yang Z Q, Ma R, Chen S, Zhan M 2020 IEEE J. Emerging. Sel. Top. Power Electron. (in press)Google Scholar

    [50]

    Ma R, Yang Z, Cheng S, Zhan M 2020 Sustained Oscillations and Bifurcations in Three-phase VSC Tied to AC Gird (submitted) IET Renewable Power Generation

    [51]

    Strogatz S H 2018 Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (Vol. 2) (Boulder: Westview Press) p241

    [52]

    Kuehn C 2015 Multiple Time Scale Dynamics (Vol. 1) (Berlin: Springer International Publishing) p53

  • [1] 王建海, 钱建强, 窦志鹏, 林锐, 许泽宇, 程鹏, 王丞, 李磊, 李英姿. 基于小波变换的多频静电力显微镜动态过程测量方法.  , 2022, 71(9): 096801. doi: 10.7498/aps.71.20212095
    [2] 张海峰, 王文旭. 复杂系统重构.  , 2020, 69(8): 088906. doi: 10.7498/aps.69.20200001
    [3] 闵富红, 马美玲, 翟炜, 王恩荣. 基于继电特性函数的互联电力系统混沌控制.  , 2014, 63(5): 050504. doi: 10.7498/aps.63.050504
    [4] 倪骏康, 刘崇新, 庞霞. 电力系统混沌振荡的等效快速终端模糊滑模控制.  , 2013, 62(19): 190507. doi: 10.7498/aps.62.190507
    [5] 张希, 包伯成, 王金平, 马正华, 许建平. 固定关断时间控制Buck变换器输出电容等效串联电阻的稳定性分析.  , 2012, 61(16): 160503. doi: 10.7498/aps.61.160503
    [6] 丁益民, 杨昌平. 考虑人类流动行为的动态复杂网络研究.  , 2012, 61(23): 238901. doi: 10.7498/aps.61.238901
    [7] 杨斌鑫, 欧阳洁, 栗雪娟. 复杂型腔充模中纤维取向的动态模拟.  , 2012, 61(4): 044701. doi: 10.7498/aps.61.044701
    [8] 谢帆, 杨汝, 张波. 直流-直流开关变换器分段光滑系统带权 Lempel-Ziv复杂度分析.  , 2012, 61(11): 110504. doi: 10.7498/aps.61.110504
    [9] 周国华, 许建平, 包伯成, 王金平, 金艳艳. 电流源负载峰值电流控制buck变换器的复杂次谐波振荡现象.  , 2011, 60(1): 010503. doi: 10.7498/aps.60.010503
    [10] 程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清. 功率因数校正Boost变换器中快时标不稳定的形成与参数动态共振.  , 2011, 60(2): 020506. doi: 10.7498/aps.60.020506
    [11] 杨汝, 张波, 赵寿柏, 劳裕锦. 基于符号时间序列方法的开关变换器离散映射算法复杂度分析.  , 2010, 59(6): 3756-3762. doi: 10.7498/aps.59.3756
    [12] 谢帆, 杨汝, 张波. 电流反馈型Buck变换器二维分段光滑系统边界碰撞和分岔研究.  , 2010, 59(12): 8393-8406. doi: 10.7498/aps.59.8393
    [13] 张源, 张浩, 马西奎. 单周期控制Cuk功率因数校正变换器中的中尺度不稳定现象分析.  , 2010, 59(12): 8432-8443. doi: 10.7498/aps.59.8432
    [14] 高 洋, 李丽香, 彭海朋, 杨义先, 张小红. 多重边融合复杂动态网络的自适应同步.  , 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
    [15] 高 洋, 李丽香, 彭海朋, 杨义先, 张小红. 多重边复杂网络系统的稳定性分析.  , 2008, 57(3): 1444-1452. doi: 10.7498/aps.57.1444
    [16] 杨 汝, 张 波, 丘东元. 开关变换器离散子系统混沌点过程描述及EMI抑制.  , 2008, 57(3): 1389-1397. doi: 10.7498/aps.57.1389
    [17] 王玲桃, 马西奎, 邹建龙, 杨 梅. 一种时延范德波尔电磁系统中的复杂行为(Ⅱ)——时空混沌图案动态.  , 2006, 55(11): 5657-5666. doi: 10.7498/aps.55.5657
    [18] 赵益波, 罗晓曙, 方锦清, 汪秉宏. 电压反馈型DC-DC变换器的稳定性研究.  , 2005, 54(11): 5022-5026. doi: 10.7498/aps.54.5022
    [19] 西门纪业, 李钰. 复合的电子束扫描系统象差的动态校正.  , 1982, 31(12): 37-43. doi: 10.7498/aps.31.37
    [20] 鲍城志. 电力系统非线性振荡过程的图析.  , 1962, 18(8): 411-421. doi: 10.7498/aps.18.411
计量
  • 文章访问数:  17039
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-03-19
  • 刊出日期:  2020-04-20

/

返回文章
返回
Baidu
map