搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

束匀滑光束偏折现象的模拟

李斌 刘占军 郝亮 郑春阳 蔡洪波 何民卿

引用本文:
Citation:

束匀滑光束偏折现象的模拟

李斌, 刘占军, 郝亮, 郑春阳, 蔡洪波, 何民卿

Numerical simulation of beam deflection for smoothed laser beams

Li Bin, Liu Zhan-Jun, Hao Liang, Zheng Chun-Yang, Cai Hong-Bo, He Min-Qing
PDF
HTML
导出引用
  • 达到高能量密度物理状态后, 光束在介质中的传播行为与经典光学研究范畴相比, 会出现一些新现象. 比如在各向同性介质内可出现光束传播方向改变的现象. 另一方面, 高能量密度物理实验中由高功率激光器产生的束匀滑光束较为常见. 本文分析了空间和时间束匀滑光束在各向同性等离子体传播中出现束偏折现象的机制和条件, 并利用三维激光等离子体相互作用程序LAP3D进行了验证. 模拟表明只有当同时发生成丝不稳定性和存在离子声速量级的横向流时束匀滑激光才会产生显著的束偏折现象.
    When it reaches high energy density state, new features of laser propagation in plasma arises in the contrast to that of research field in classical optics. Such as beam deflection, a laser beam can change its propagation direction while it comes across a transverse plasma flow. On the other hand, employment of all sorts of smoothed laser beams becomes very common in high power laser facilities for high energy density physics experiments. Therefore, on what condition beam deflection comes into play for smoothed beams are necessary to be investigated. This paper presents numerical simulation results for that, which is performed by laser plasma interaction code LAP3D. It is a three dimensional massively parallel code, including a laser paraxial envelope solver and a nonlinear Eulerian hydrodynamics package, and models for filamentation, stimulated Raman scattering and stimulated Brillouin scattering, with beam smoothed by continuous phase plate (CPP), spectral dispersion (SSD), separately. For simplicity in this study, numerical simulations perform in a about 700 μm × 700 μm × 700 μm plasma using isotropic conditions (Te = 3 keV, Ti = 1 keV, n = 0.1 nc) and only include refraction and diffraction effects, namely, with filamentation model excluding scattering models. Simulation employs the CPP and the SSD beam as representatives of spatial and temporal smoothed beams, respectively, and uses an oval like focused spot with extension in the long axis direction about 200 μm in the focus plane propagating through the left boundary into the simulation domain. Based on our previous investigations, we assume that beam deflection of a smoothed beam becomes effective when it satisfies two following conditions as that for a Gaussian beam, namely, suffering filamentation and facing a transverse plasma flow at ion sound speed. Simulation results of LAP3D confirm that both spatial and temporal smoothed beams suffer beam deflection when two above conditions are both satisfied. For the case of CPP smoothed beam, simulation results show that it suffers evident beam deflection under the conditions that it suffers filamentation when its average intensity is larger than that of filamentation threshold, and faces a transverse plasma flow at ion sound speed. For the case of SSD smoothed beam, simulation results show that the beam can avoid beam deflection even if it faces a transverse plasma flow at ion sound speed when filamentation is suppressed as beam bandwidth is much larger than the growth rate of filamentation, otherwise it suffers beam deflection.
      通信作者: 刘占军, liuzj@iapcm.ac.cn ; 郝亮, hao_liang@iapcm.ac.cn
    • 基金项目: 国家级-激光等离子体次级不稳定性及其耦合过程研究(11875093)
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    德雷克 著 (孙承纬 译) 2013 高能量密度物理基础、惯性约束聚变和实验天体物理学(北京: 国防工业出版社) 第245—286页

    Drake R P (translated by Sun C W) 2013 High-Energy-Density Physics Fundamentals, Inertial Fusion, and Experimental Astrophysics (Beijing: National Defense Industry Press) pp245−286 (in Chinese)

    [3]

    Montgomery D S 2016 Phys. Plasmas 23 055601Google Scholar

    [4]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Control. Fusion 55 103001Google Scholar

    [5]

    张家泰 1999 激光等离子体相互作用物理与模拟(郑州: 河南科学技术出版社) pp269−316

    Zhang J T 1999 Physics and Simulations of Laser Plasma Interactions (Zhengzhou: Henan Science and Technology Press) 第269—316页 (in Chinese)

    [6]

    Moody J D, MacGowan B J, Rothenberg J E, Berger R L, Young P E 2001 Phys. Rev. Lett. 86 2810Google Scholar

    [7]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [8]

    周煜梁, 隋展, 刘兰琴, 粟敬钦, 李平, 张锐, 许立新, 王文义, 莫磊 2011 激光与光电子学进展 48 101407

    Zhou Y L, Sui Z, Liu L Q, Su J Q, Li P, Zhang R, Xu L X, Wang W Y, Mo L 2011 Laser & Optoelectronics Progress 48 101407

    [9]

    Young P E, Still C H, Hinkel D E, Kruer W L, Estabrook K G 1998 Phys. Rev. Lett. 81 1425Google Scholar

    [10]

    Moody J D, MacGowan B J, Hinkel D E, Kruer W L, Williams E A, Estabrook K, Berger R L, Kirkwood R K, Montgomery D S, Shepard T D 1996 Phys. Rev. Lett. 77 1294Google Scholar

    [11]

    李斌, 刘占军, 郑春阳, 胡晓燕 2014 强激光与离子束 26 122005Google Scholar

    Li B, Liu Z J, Zheng C Y, Hu X Y 2014 High Power Laser and Particle Beams 26 122005Google Scholar

    [12]

    Hu X Y, Hao L, Liu Z J, Zheng C Y, Li B, Guo H 2015 AIP Advances 5 087174Google Scholar

    [13]

    Liu Z J, Li B, Hu X Y, Xiang J, Zheng C Y, Cao L H, Hao L 2016 Phys. Plasmas 23 022705Google Scholar

    [14]

    李平, 马驰, 粟敬钦, 程文雍, 刘兰琴, 王文义, 莫磊, 周丽丹 2008 强激光与粒子束 20 1114

    Li P, Ma C, Su J Q, Cheng W Y, Liu L Q, Wang W Y, Mo L, Zhou L D 2008 High Power Laser and Particle Beams 20 1114

    [15]

    李斌, 胡晓燕, 郑春阳, 刘占军 2016 强激光与离子束 28 112004

    Li B, Hu X Y, Zheng C Y, Liu Z J 2016 High Power Laser and Particle Beams 28 112004

    [16]

    李斌, 刘占军, 郝亮, 胡晓燕, 郑春阳, 项江 2017 中国激光 44 1201004Google Scholar

    Li B, Liu Z J, Hao L, Hu X Y, Zheng C Y, Xiang J 2017 Chinese J. Lasers 44 1201004Google Scholar

    [17]

    Kruer W L 2003 The Physics of Laser Plasma Interactions (Colorado: Westview Press) pp70–71

    [18]

    Tomson J J, Kruer W L, Bodner S E, DeGroot J S 1974 Phys. Fluids 17 849Google Scholar

    [19]

    Valeo E J, Oberman C 1973 Phys. Rev. Lett. 30 1035Google Scholar

    [20]

    Thomson J J, Karush J I 1974 Phys. Fluids 17 1608Google Scholar

    [21]

    Williams E A, Albitton J R, Rosenbluth M N 1979 Phys. Fluids 22 139Google Scholar

  • 图 1  不同激光强度下空间束匀滑光束对应的束偏折模拟结果 (a) Φ200模型2加横向流; (b) Φ200模型5加横向流. 图中横纵坐标对应模拟空间坐标zx, 其量纲为激光波长. 横向流速等于离子声速

    Fig. 1.  Beam deflection simulation results at different incident intensity: (a) Transverse flow and average intensity lower than filamentation threshold; (b) transverse flow and average intensity higher than filamentation threshold. x and yaxes of two figures corresponding to xand z axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length. The transverse flow speed equals ion sound speed.

    图 2  对比空间束匀滑光束发生束偏折时Φ200模型5加横向流的入射面和出射面内光斑电场幅值分布 (a)入射面; (b)出射面. 图中横纵坐标对应模拟空间坐标xy, 其量纲为激光波长. 横向流速等于离子声速

    Fig. 2.  Comparison of spatial distribution of laser electric field between laser entrance and exit planes as beam deflection presents: (a) Laser entrance plane; (b) laser exit plane. x and y axes of two figures corresponding to x and y axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length. The transverse flow speed equals ion sound speed.

    图 3  调制频率为${10^{ - 3}}{\omega _0}$的时间束匀滑光束传播行为 (a)对应11000激光周期; (b)对应13750激光周期. 图中横纵坐标对应模拟空间坐标zy, 其量纲为激光波长

    Fig. 3.  Propagation of SSD beam at modulation frequency of 10–3ω0: (a) Corresponding simulation result at 11000 th laser periods; (b) corresponding simulation result at 13750 th laser periods. x and y axes of two figures corresponding to z and y axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length.

    图 4  有横向离子声速量级等离子体流时调制频率为${10^{ - 3}}{\omega _0}$的时间束匀滑光束的传播行为 (a)对应11000激光周期; (b)对应13750激光周期. 图中横纵坐标对应模拟空间坐标zy, 其量纲为激光波长. 横向流速等于离子声速

    Fig. 4.  Propagation of SSD beam with transverse flow at modulation frequency of 10–3 ω0: (a) Corresponding simulation result at 11000 th laser periods; (b) corresponding simulation result at 13750th laser periods. x and y axes of two figures corresponding to z and y axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length. The transverse flow speed equals ion sound speed.

    图 5  对比时间束匀滑光束在调制频率为${10^{ - 4}}{\rm{ }}{\omega _0}$时的光束传播行为 (a)等离子体横向流速为零; (b)等离子体横向流速等于离子声速. 图中横纵坐标对应模拟空间坐标yz, 其量纲为激光波长

    Fig. 5.  Propagation of SSD beam at modulation frequency of 10–4ω0: (a) No transverse flow; (b) the transverse flow speed equals ion sound speed. x and y axes of two figures corresponding to y and z axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length.

    表 1  空间束匀滑光束Φ200成丝和束偏折现象模拟结果

    Table 1.  Simulation results for filamentaion and beam deflection in the case of CPP smoothed beam Φ200.

    模型光斑平均强度/${\rm{W} } \cdot {\rm{c} }{ {\rm{m} }^{ {\rm{ - 2} } } }$成丝现象束偏折现象
    14.30 × 1013
    23.86 × 1014
    31.07 × 1015
    42.11 × 1015
    53.49 × 1015
    下载: 导出CSV
    Baidu
  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    德雷克 著 (孙承纬 译) 2013 高能量密度物理基础、惯性约束聚变和实验天体物理学(北京: 国防工业出版社) 第245—286页

    Drake R P (translated by Sun C W) 2013 High-Energy-Density Physics Fundamentals, Inertial Fusion, and Experimental Astrophysics (Beijing: National Defense Industry Press) pp245−286 (in Chinese)

    [3]

    Montgomery D S 2016 Phys. Plasmas 23 055601Google Scholar

    [4]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Yin L, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Control. Fusion 55 103001Google Scholar

    [5]

    张家泰 1999 激光等离子体相互作用物理与模拟(郑州: 河南科学技术出版社) pp269−316

    Zhang J T 1999 Physics and Simulations of Laser Plasma Interactions (Zhengzhou: Henan Science and Technology Press) 第269—316页 (in Chinese)

    [6]

    Moody J D, MacGowan B J, Rothenberg J E, Berger R L, Young P E 2001 Phys. Rev. Lett. 86 2810Google Scholar

    [7]

    Craxton R S, Anderson K S, Boehly T R, Goncharov V N, Harding D R, Knauer J P, McCrory R L, McKenty P W, Meyerhofer D D, Myatt J F, Schmitt A J, Sethian J D, Short R W, Skupsky S, Theobald W, Kruer W L, Tanaka K, Betti R, Collins T J B, Delettrez J A, Hu S X, Marozas J A, Maximov A V, Michel D T, Radha P B, Regan S P, Sangster T C, Seka W, Solodov A A, Soures J M, Stoeckl C, Zuegel J D 2015 Phys. Plasmas 22 110501Google Scholar

    [8]

    周煜梁, 隋展, 刘兰琴, 粟敬钦, 李平, 张锐, 许立新, 王文义, 莫磊 2011 激光与光电子学进展 48 101407

    Zhou Y L, Sui Z, Liu L Q, Su J Q, Li P, Zhang R, Xu L X, Wang W Y, Mo L 2011 Laser & Optoelectronics Progress 48 101407

    [9]

    Young P E, Still C H, Hinkel D E, Kruer W L, Estabrook K G 1998 Phys. Rev. Lett. 81 1425Google Scholar

    [10]

    Moody J D, MacGowan B J, Hinkel D E, Kruer W L, Williams E A, Estabrook K, Berger R L, Kirkwood R K, Montgomery D S, Shepard T D 1996 Phys. Rev. Lett. 77 1294Google Scholar

    [11]

    李斌, 刘占军, 郑春阳, 胡晓燕 2014 强激光与离子束 26 122005Google Scholar

    Li B, Liu Z J, Zheng C Y, Hu X Y 2014 High Power Laser and Particle Beams 26 122005Google Scholar

    [12]

    Hu X Y, Hao L, Liu Z J, Zheng C Y, Li B, Guo H 2015 AIP Advances 5 087174Google Scholar

    [13]

    Liu Z J, Li B, Hu X Y, Xiang J, Zheng C Y, Cao L H, Hao L 2016 Phys. Plasmas 23 022705Google Scholar

    [14]

    李平, 马驰, 粟敬钦, 程文雍, 刘兰琴, 王文义, 莫磊, 周丽丹 2008 强激光与粒子束 20 1114

    Li P, Ma C, Su J Q, Cheng W Y, Liu L Q, Wang W Y, Mo L, Zhou L D 2008 High Power Laser and Particle Beams 20 1114

    [15]

    李斌, 胡晓燕, 郑春阳, 刘占军 2016 强激光与离子束 28 112004

    Li B, Hu X Y, Zheng C Y, Liu Z J 2016 High Power Laser and Particle Beams 28 112004

    [16]

    李斌, 刘占军, 郝亮, 胡晓燕, 郑春阳, 项江 2017 中国激光 44 1201004Google Scholar

    Li B, Liu Z J, Hao L, Hu X Y, Zheng C Y, Xiang J 2017 Chinese J. Lasers 44 1201004Google Scholar

    [17]

    Kruer W L 2003 The Physics of Laser Plasma Interactions (Colorado: Westview Press) pp70–71

    [18]

    Tomson J J, Kruer W L, Bodner S E, DeGroot J S 1974 Phys. Fluids 17 849Google Scholar

    [19]

    Valeo E J, Oberman C 1973 Phys. Rev. Lett. 30 1035Google Scholar

    [20]

    Thomson J J, Karush J I 1974 Phys. Fluids 17 1608Google Scholar

    [21]

    Williams E A, Albitton J R, Rosenbluth M N 1979 Phys. Fluids 22 139Google Scholar

  • [1] 庄英豪, 傅芸, 蔡伟, 张青松, 吴真, 郭林辉, 钟哲强, 张彬. 半导体激光阵列谱合束系统中光束串扰物理机制分析.  , 2023, 72(2): 024206. doi: 10.7498/aps.72.20221783
    [2] 王辉林, 廖艳林, 赵艳, 章文, 谌正艮. 基于多激光束驱动准单能高能质子束模拟研究.  , 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [3] 张建柱, 张飞舟, 苏华, 胡鹏, 谢晓钢, 罗文. 强激光上行大气传输热晕效应导致的光束偏折研究.  , 2021, 70(24): 244202. doi: 10.7498/aps.70.20211138
    [4] 熊皓, 钟哲强, 张彬, 隋展, 张小民. 基于束间动态干涉的快速匀滑新方法.  , 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [5] 高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展. 基于低相干光的阵列透镜束匀滑技术研究.  , 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [6] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案.  , 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [7] 李福建, 高妍琦, 赵晓晖, 季来林, 王伟, 黄秀光, 马伟新, 隋展, 裴文兵. 诱导空间非相干束匀滑技术的近区特性及改善技术.  , 2018, 67(17): 175201. doi: 10.7498/aps.67.20180533
    [8] 李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案.  , 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [9] 张扬, 戴自换, 孙奇志, 章征伟, 孙海权, 王裴, 丁宁, 薛创, 王冠琼, 沈智军, 李肖, 王建国. FP-1装置铝套筒内爆动力学过程的一维磁流体力学模拟.  , 2018, 67(8): 080701. doi: 10.7498/aps.67.20172300
    [10] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案.  , 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [11] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束.  , 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [12] 钟哲强, 周冰洁, 叶荣, 张彬. 多频多色光谱角色散束匀滑新方案.  , 2014, 63(3): 035201. doi: 10.7498/aps.63.035201
    [13] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究.  , 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [14] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流.  , 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [15] 晏骥, 郑建华, 陈黎, 涂绍勇, 韦敏习, 余波, 刘慎业, 江少恩. 基于神光Ⅲ原型装置的新型针孔点背光实验.  , 2013, 62(4): 045203. doi: 10.7498/aps.62.045203
    [16] 晏骥, 韦敏习, 蒲昱东, 刘慎业, 詹夏雨, 林稚伟, 郑建华, 江少恩. 新型针孔点背光发光模型与实验研究.  , 2013, 62(1): 015204. doi: 10.7498/aps.62.015204
    [17] 周冰洁, 钟哲强, 张彬. 光束运动特性对焦斑束匀滑效果的影响.  , 2012, 61(21): 214202. doi: 10.7498/aps.61.214202
    [18] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断.  , 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [19] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究.  , 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [20] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究.  , 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
计量
  • 文章访问数:  5517
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2020-02-01
  • 刊出日期:  2020-04-05

/

返回文章
返回
Baidu
map