搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁化套筒惯性聚变一维集成化数值模拟

赵海龙 肖波 王刚华 王强 章征伟 孙奇志 邓建军

引用本文:
Citation:

磁化套筒惯性聚变一维集成化数值模拟

赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军

One-dimensional integrated simulations of magnetized liner inertial fusion

Zhao Hai-Long, Xiao Bo, Wang Gang-Hua, Wang Qiang, Zhang Zheng-Wei, Sun Qi-Zhi, Deng Jian-Jun
PDF
HTML
导出引用
  • 磁化套筒惯性聚变(magnetized liner inertial fusion, MagLIF)结合了传统磁约束聚变和惯性约束聚变的优点, 理论上可以显著地降低聚变实现的难度, 具有极大的应用潜力. 以研究MagLIF中的关键问题为目标, 建立能够综合考虑磁化、预加热、套筒内爆、聚变反应、端面效应、磁通压缩等多种复杂机制在内的集成化物理模型, 特别是通过引入流体喷射模型, 使得可以在一维计算条件下考虑具有二维特性的端面损失情况, 并额外考虑Nernst扩散项对磁通损失的影响. 在此基础上编写实现一维集成化MagLIF数值模拟程序MIST (magnetic implosion simulation tools), 与FP-1装置(2 MA, 7.2 μs)上铝套筒内爆实验结果的对比验证了程序磁流体模块的正确性; 将聚变模块纳入后与国外同类程序LASNEX和HYDRA计算结果进行整体比较, 所得数值结果总体接近, 主要差异体现在燃料温度的计算上, 对可能影响的原因进行了简要分析. 所建立的集成化模型与程序将为未来开展MagLIF聚变实验研究提供坚实的理论基础和重要工具.
    Magnetized liner inertial fusion (MagLIF) integrates the advantages of traditional magnetic confinement fusion with those of inertial confinement fusion, and thus has promising potentials because theoretically it can dramatically lower the difficulties in realizing the controlled fusion. For the systematic simulating of MagLIF, we build up an integrated one-dimensional (1D) model to describe the complex process, which includes the terms of magnetization, laser preheating, liner implosion, fusion reaction, end loss effect, and magnetic flux compression. According to this model we develop an integrated 1D code–MIST (magnetic implosion simulation tools) , and specifically we propose a simplified model to describe the end loss effect based on the flow bursting theory, so the code is able to consider two-dimensional effects within 1D calculations. We also present a specific expression of magnetic diffusion equation where the Nernst effect term is taken into consideration, which is very important if there exists a temperature gradient perpendicular to magnetic field lines. Such conditions are fully satisfied in the MagLIF process. We use experimental data of aluminum liner implosions to verify the magneto-hydrodynamic module of our code, those shots (0607 & 0523) are performed on FP-1 facility (2 MA, 7.2 μs), and results show good agreement with the calculated velocity of inner flyer or target surface and other measurements. Comparison with code LASNEX and HYDRA (used by Sandia Laboratory) is also made to assess the fusion module, and the results show that our calculations are physically self-consistent and roughly coincide with the results from LASNEX and HYDRA, a key difference appears at fuel temperature, and the factors that might cause this difference are discussed. With this integrated model and 1D code, our work would provide a powerful tool for the future experimental research of MagLIF.
      通信作者: 赵海龙, ifp.zhaohailong@qq.com
    • 基金项目: 国家自然科学基金(批准号: 11205145)资助的课题
      Corresponding author: Zhao Hai-Long, ifp.zhaohailong@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11205145)
    [1]

    Sinars D B, Campbell E M, Cuneo M E, Jennings C A, Peterson K J, Sefkow A B 2016 J Fusion Energy 35 78Google Scholar

    [2]

    Ding B J, Bonoli P T, Tuccillo A, Goniche M, Kirov K, Li M, Li Y, Cesario R, Peysson Y, Ekedahl A, Amicucci L, Baek S, Faust I, Parker R, Shiraiwa S, Wallace G M, Cardinali A, Castaldo C, Ceccuzzi S, Mailloux J, Napoli F, Liu F, Wan B 2018 Nucl. Fusion 58 095003Google Scholar

    [3]

    Makwana K D, Keppens R, Lapenta G 2018 Phys. Plasmas 25 082904Google Scholar

    [4]

    Shimomura Y, Spears W 2004 IEEE Trans. Plasma Sci. 14 1369

    [5]

    Clark D S, Weber C R, Milovich J L, Pak A E, Casey D T, Hammel B A, Ho D D, Jones O S, Koning J M, Kritcher A L, Marinak M M, Masse L P, Munro D H, Patel M V, Patel P K, Robey H F, Schroeder C R, Sepke S M, Edwards M J 2019 Phys. Plasmas 26 050601Google Scholar

    [6]

    Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar

    [7]

    McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P 2008 Phys. Plasmas 15 055503Google Scholar

    [8]

    Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar

    [9]

    Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar

    [10]

    Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar

    [11]

    薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 24 094701Google Scholar

    Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar

    [12]

    Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar

    [13]

    Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar

    [14]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar

    [15]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003Google Scholar

    [16]

    Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar

    [17]

    Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar

    [18]

    Gomez M R, Slutz S A, Sefkow A B, Sinars D B, Hahn K D, Hansen S B, Harding E C, Knapp P F, Schmit P F, Jennings C A, Awe T J, Geissel M, Rovang D C, Chandler G A, Cooper G W, Cuneo M E, Harvey-Thompson A J, Herrmann M C, Hess M H, Johns O, Lamppa D C, Martin M R, McBride R D, Peterson K J, Porter J L, Robertson G K, Rochau G A, Ruiz C L, Savage M E, Smith I C, Stygar W A, Vesey R A 2014 Phys. Rev. Lett. 113 155003Google Scholar

    [19]

    Awe T J, McBride R D, Jennings C A, Lamppa D C, Martin M R, Rovang D C, Slutz S A, Cuneo M E, Owen A C, Sinars D B, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, McKenney J L, Nakhleh C, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2013 Phys. Rev. Lett. 111 235005Google Scholar

    [20]

    Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar

    [21]

    赵海龙, 张恒第, 王刚华, 王强 2017 强激光与粒子束 29 072001

    Zhao H L, Zhang H D, Wang G H, Wang Q 2017 High Power Laser and Particle Beams 29 072001

    [22]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59Google Scholar

    [23]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [24]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E, Gomez M R, Hughes T P, Pointon T D, and Seidel D B 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar

    [25]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, and Maron Y 2017 Phys. Rev. ST Accel. Beams 20 010401Google Scholar

    [26]

    Slutz S A 2012 Sandia National Laboratory Report SAND2012-1734 C

    [27]

    Sefkow A B, Koning J M, Marinak M M, Nakhleh C W, Peterson K J, Sinars D B, Slutz S A, Vesey R A 2012 Sandia National Laboratory Report SAND2012-0876C

  • 图 1  MagLIF过程示意图(包含3个主要阶段)

    Fig. 1.  Schematic of MagLIF process, including three main stages.

    图 2  端面效应简化模型示意图

    Fig. 2.  Schematic of simplified model describing end loss effect.

    图 3  磁通压缩与扩散过程示意图

    Fig. 3.  Schematic of magnetic flux compression and diffusion process.

    图 4  FP-1装置0523与0607发次实验驱动电流测量曲线

    Fig. 4.  Experimental current curves of shot 0523 & 0607.

    图 5  MIST计算得到的自由面速度曲线与实验测量结果的比较 (a) 0607发次; (b) 0523发次

    Fig. 5.  Comparison of inner surface velocity curves between the calculations and measurements: (a) 0607 shot; (b) 0523 shot.

    图 6  MIST程序计算得到的(a)监测点、(b)套筒内爆速度、(c)燃料温度, 以及(d)聚变产额等随时间的演化曲线

    Fig. 6.  Calculated results of (a) grid position, (b) implosion velocity, (c) fuel temperature, and (d) fusion yield evolving with time.

    图 7  端面效应与Nernst效应影响下, 套筒内(a)燃料质量与(b)磁通随时间的演化

    Fig. 7.  (a) Fuel mass and (b) magnetic flux evolving with time with consideration of end loss and Nernst effect.

    表 1  系数C0C7的取值

    Table 1.  Values of coefficient C0C7

    C0 /keV1/3C1/cm3·s–1C2/keV–1C3/keV–1
    6.661643.41×10–1615.136×10–375.189×10–3
    C4/keV–2C5/keV–2C6/keV–3C7/keV–3
    4.6064×10–313.5×10–3–0.10675×10–30.01366×10–3
    下载: 导出CSV

    表 2  MIST与LASNEX和HYDRA程序一维计算结果的对比

    Table 2.  Comparison of calculated results between MIST and LASNEX, HYDRA.

    程序名称燃料密度/g·cm–3燃料温度/keV磁场强度/103 T压缩比峰值压力/Gbar聚变产额/kJ
    LASNEX0.586—13233500
    MIST0.478.57162.7620
    HYDRA0.8—1.06—88—22225565
    MIST0.569.58173.3725
    下载: 导出CSV
    Baidu
  • [1]

    Sinars D B, Campbell E M, Cuneo M E, Jennings C A, Peterson K J, Sefkow A B 2016 J Fusion Energy 35 78Google Scholar

    [2]

    Ding B J, Bonoli P T, Tuccillo A, Goniche M, Kirov K, Li M, Li Y, Cesario R, Peysson Y, Ekedahl A, Amicucci L, Baek S, Faust I, Parker R, Shiraiwa S, Wallace G M, Cardinali A, Castaldo C, Ceccuzzi S, Mailloux J, Napoli F, Liu F, Wan B 2018 Nucl. Fusion 58 095003Google Scholar

    [3]

    Makwana K D, Keppens R, Lapenta G 2018 Phys. Plasmas 25 082904Google Scholar

    [4]

    Shimomura Y, Spears W 2004 IEEE Trans. Plasma Sci. 14 1369

    [5]

    Clark D S, Weber C R, Milovich J L, Pak A E, Casey D T, Hammel B A, Ho D D, Jones O S, Koning J M, Kritcher A L, Marinak M M, Masse L P, Munro D H, Patel M V, Patel P K, Robey H F, Schroeder C R, Sepke S M, Edwards M J 2019 Phys. Plasmas 26 050601Google Scholar

    [6]

    Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar

    [7]

    McCrory R L, Meyerhofer D D, Betti R, Craxton R S, Delettrez J A, Edgell D H, Glebov V Yu, Goncharov V N, Harding D R, Jacobs-Perkins D W, Knauer J P, Marshall F J, McKenty P W, Radha P B, Regan S P 2008 Phys. Plasmas 15 055503Google Scholar

    [8]

    Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar

    [9]

    Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar

    [10]

    Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar

    [11]

    薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 24 094701Google Scholar

    Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar

    [12]

    Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar

    [13]

    Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar

    [14]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar

    [15]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett. 108 025003Google Scholar

    [16]

    Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar

    [17]

    Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar

    [18]

    Gomez M R, Slutz S A, Sefkow A B, Sinars D B, Hahn K D, Hansen S B, Harding E C, Knapp P F, Schmit P F, Jennings C A, Awe T J, Geissel M, Rovang D C, Chandler G A, Cooper G W, Cuneo M E, Harvey-Thompson A J, Herrmann M C, Hess M H, Johns O, Lamppa D C, Martin M R, McBride R D, Peterson K J, Porter J L, Robertson G K, Rochau G A, Ruiz C L, Savage M E, Smith I C, Stygar W A, Vesey R A 2014 Phys. Rev. Lett. 113 155003Google Scholar

    [19]

    Awe T J, McBride R D, Jennings C A, Lamppa D C, Martin M R, Rovang D C, Slutz S A, Cuneo M E, Owen A C, Sinars D B, Tomlinson K, Gomez M R, Hansen S B, Herrmann M C, McKenney J L, Nakhleh C, Robertson G K, Rochau G A, Savage M E, Schroen D G, Stygar W A 2013 Phys. Rev. Lett. 111 235005Google Scholar

    [20]

    Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar

    [21]

    赵海龙, 张恒第, 王刚华, 王强 2017 强激光与粒子束 29 072001

    Zhao H L, Zhang H D, Wang G H, Wang Q 2017 High Power Laser and Particle Beams 29 072001

    [22]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59Google Scholar

    [23]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [24]

    Madrid E A, Rose D V, Welch D R, Clark R E, Mostrom C B, Stygar W A, Cuneo M E, Gomez M R, Hughes T P, Pointon T D, and Seidel D B 2013 Phys. Rev. ST Accel. Beams 16 120401Google Scholar

    [25]

    Gomez M R, Gilgenbach R M, Cuneo M E, Jennings C A, McBride R D, Waisman E M, Hutsel B T, Stygar W A, Rose D V, and Maron Y 2017 Phys. Rev. ST Accel. Beams 20 010401Google Scholar

    [26]

    Slutz S A 2012 Sandia National Laboratory Report SAND2012-1734 C

    [27]

    Sefkow A B, Koning J M, Marinak M M, Nakhleh C W, Peterson K J, Sinars D B, Slutz S A, Vesey R A 2012 Sandia National Laboratory Report SAND2012-0876C

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究.  , 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 郝保龙, 李颖颖, 陈伟, 郝广周, 顾翔, 孙恬恬, 王嵎民, 董家齐, 袁保山, 彭元凯, 石跃江, 谢华生, 刘敏胜, ENN TEAM. EXL-50U球形环中快离子磁场波纹损失的优化模拟研究.  , 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [3] 季阳, 陈美玲, 黄汛, 吴永政, 兰冰. 不同光学网络结构玻色采样发生随机光子损失的模拟研究.  , 2022, 71(19): 190301. doi: 10.7498/aps.71.20220331
    [4] 龚振洲, 魏浩, 范思源, 孙凤举, 吴撼宇, 邱爱慈. 15 MA Z箍缩装置真空磁绝缘传输线损失电流的电路模拟.  , 2022, 71(10): 105202. doi: 10.7498/aps.71.20212378
    [5] 赵世杭, 张元, 吕思远, 程少博, 郑长林, 王鹿霞. 电子能量损失谱探测银纳米棒与介质层强耦合的数值模拟.  , 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [6] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟.  , 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [7] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟.  , 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [8] 赵海龙, 肖波, 王刚华, 王强, 阚明先, 段书超, 谢龙, 邓建军. 磁化套筒惯性聚变中端面损失效应的一维唯象模型与影响分析.  , 2021, 70(6): 065202. doi: 10.7498/aps.70.20201587
    [9] 赵海龙, 王刚华, 肖波, 王强, 阚明先, 段书超, 谢龙. 磁化套筒惯性聚变中轴向磁场演化特征与Nernst效应影响.  , 2021, 70(13): 135201. doi: 10.7498/aps.70.20202215
    [10] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响.  , 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [11] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计.  , 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [12] 张旭琳, 杨伟, 罗统政, 黄燕燕, 雷蕾, 李贵君, 徐平. 集成化导光板下表面微棱镜二维分布公式探究.  , 2019, 68(21): 218501. doi: 10.7498/aps.68.20190854
    [13] 罗旭东, 牛胜利, 左应红. 典型甚低频电磁波对辐射带高能电子的散射损失效应.  , 2015, 64(6): 069401. doi: 10.7498/aps.64.069401
    [14] 杨欢, 张穗萌, 吴兴举. 大能量损失几何条件下末态屏蔽效应和交换效应的理论研究.  , 2009, 58(10): 6938-6945. doi: 10.7498/aps.58.6938
    [15] 赵正予, 王 翔. 空中核爆炸电离效应的数值模拟.  , 2007, 56(7): 4297-4304. doi: 10.7498/aps.56.4297
    [16] 张新陆, 王月珠, 李 立, 鞠有伦. 端面抽运Tm, Ho:YLF激光器热转换系数及热透镜效应的研究.  , 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [17] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵. 端面抽运固体激光器热透镜效应的实验研究.  , 2004, 53(6): 1804-1809. doi: 10.7498/aps.53.1804
    [18] 刘文彪, 朱建阳, 赵峥. Nernst定理与Reissner-Nordstrom黑洞Dirac场的熵.  , 2000, 49(3): 581-585. doi: 10.7498/aps.49.581
    [19] 宋远红, 王友年, 宫 野. 氢离子在固体表面掠角散射与能量损失的数值模拟.  , 1999, 48(7): 1275-1281. doi: 10.7498/aps.48.1275
    [20] 李跃林, 徐至展, 陈时胜. Al等离子体辐射损失的数值研究.  , 1990, 39(12): 1915-1920. doi: 10.7498/aps.39.1915
计量
  • 文章访问数:  6892
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-11-08
  • 刊出日期:  2020-02-05

/

返回文章
返回
Baidu
map