-
利用热蒸发技术在衬底温度为室温的硅衬底、氧化铟锡衬底和石英衬底上制备了红荧烯与氧化钼的混合薄膜. 将两种材料放置于不同的坩埚中, 通过控制蒸发源的温度来控制混合比例, 制备了不同比例的混合薄膜. 通过原子力显微镜对混合薄膜的表面形貌进行了测量, 发现当红荧烯与氧化钼的比例为2∶1时, 薄膜表面的平整度最好; 通过X射线衍射分析对混合薄膜的结晶性进行分析, 发现不同浓度的混合薄膜均表现出非晶态特征. 通过PL谱和吸收光谱研究了不同比例的混合薄膜的光学性质, 从光致发光谱可以发现: 混合薄膜在近红外区域有显著吸收, 说明红荧烯在氧化钼诱导下产生中间能级, 形成电荷转移络合物. 从吸收谱知: 除4∶1外, 其他比例的混合薄膜具有几乎相同的吸收峰. 根据Tauc方程计算了混合薄膜的光学带隙, 发现当红荧烯与氧化钼的比例为2∶1时, 混合薄膜的带隙最窄(~2.23 eV). 制备了结构为Al/rubrene∶MoO3/ITO的器件, 测试了J-V特性, 研究了混合薄膜的电学性质. 发现当混合比例为4∶1和2∶1时, 混合薄膜与金属电极的接触表现为欧姆接触. 本研究显示出红荧烯和氧化钼的混合薄膜在近红外区域有潜在的应用前景, 也为红荧烯和氧化钼的混合薄膜在有机光电器件的应用提供了基础.
-
关键词:
- rubrene∶MoO3混合薄膜 /
- 原子力显微镜 /
- X射线衍射分析 /
- 光学性质和电学性质
In this paper, the mixed films with different rubrene-to-MoO3 ratios are deposited on the substrates of Si, indium tin oxide and quartz glass by using the thermal evaporation technique. First, these films are characterized by atomic force microscopy and X-ray diffraction in order to identify their surface morphology and their structure properties. The results show that all the films are amorphous and the film has the best flatness when the rubrene-to-MoO3 ratio is 2∶1. Second, the optical properties of the mixed films are investigated by both photoluminescence (PL) spectra and absorption spectra. The optical band gap of rubrene and MoO3 are 2.2 eV and 3.49 eV respectively and there is almost no absorption about rubrene and MoO3 in the near-infrared (NIR) region. However the PL spectrum shows a peak in NIR region and it indicates that the interface between rubrene and MoO3 possesses an abrupt discontinuity at the vacuum level, resulting in electron wave functions overlapping and charge-transfer complex (CTC) forming. The intermediate state within the original band gap of rubrene with energy of 1.25 eV is induced by the CTC, which suggests the possibility of charge transfer exciton generated upon NIR excitation. The absorption spectra of the mixed films show that there is an obvious absorption. All the films have the same absorption peak except the film with a rubrene-to-MoO3 ratio of 4∶1 and it indicates that the concentration of MoO3 has almost no influence on the absorption of the mixed films. The optical band gaps of the mixed thin films are calculated in a spectral range of 345-1035 nm according to the Tauc equation, and the results show that the optical band gap of the film with a rubrene-to-MoO3 ratio of 2∶1 is narrowest (~2.23 eV). In order to study the electrical characteristics of the mixed films, an Al/rubrene:MoO3/ITO device is fabricated. The current density-voltage (J-V) characteristic is also investigated. The analysis of the J-V measurement for the device indicates that the current conduction in the Al/rubrene:MoO3/ITO device is Ohmic type when the rubrene-to-MoO3 ratios are 4∶1 and 2∶1, and it is Schottky type when the ratio is other value. The current for rubrene-to-MoO3 ratio of 1∶1 is larger than that for 1∶2, which indicates that the contact is better when the surface is more smooth. These properties of the mixed films can result in the applications in the near-infrared region. -
Keywords:
- mixed film of rubrene∶MoO3 /
- atomic force microscope /
- X-ray diffraction /
- properties of optical and electrical
[1] Sundar V C, Zaumseil J, Podzorov V, et al. 2004 Science 303 1644Google Scholar
[2] Luo Y, Brun M, Rannou P, et al. 2007 Phys. Status Solidi 204 1851Google Scholar
[3] Park S W, Jeong S H, Choi J M, et al. 2007 Appl. Phys. Lett. 91 26
[4] 邓金祥, 康成龙, 杨冰, 等 2012 真空科学与技术学报 32 678Google Scholar
Deng J X, Kang C L, Yang B, et al. 2012 Chin. J. Vacu. Sci. Tech. 32 678Google Scholar
[5] Ng T W, Lo M F, Yang Q D, et al. 2012 Adv. Func. Mater. 22 3035Google Scholar
[6] Liu Y, Wu X M, Xiao Z H, et al. 2017 Appl. Surf. Sci. 413 302Google Scholar
[7] Hsu C H, Deng J, Staddon C R, et al. 2007 Appl. Phys. Lett. 91 193505Google Scholar
[8] Matsushima T, Jin G H, Kanai Y, et al. 2011 Org. Elec. 12 520Google Scholar
[9] Kubo M, Iketaki K, Kaji T, et al. 2011 Appl. Phys. Lett. 98 40
[10] Nakanotani H, Kakizoe H, Adachi C 2011 Sol. Sta. Com. 151 93Google Scholar
[11] 杨海刚, 尤天友, 宋桂林, 等 2011 真空 48 58Google Scholar
Yang H G, You T Y, Song J L, et al. 2011 Vacuum 48 58Google Scholar
[12] 王娜娜, 于军胜, 王琦, 等 2011 量子电子学报 28 191Google Scholar
Wang N N, Yu J S, Wang Q, et al. 2011 Chin. J. Quan. Elec. 28 191Google Scholar
[13] 刘恩科, 朱秉生, 罗晋生 2017 半导体物理学 (第七版) (北京: 电子工业出版社) 第201页
Liu E K, Zhu B S, Luo J S 2017 The Physics Semiconductors E7 (Beijing: Publishing House of Electronics Industry) p201 (in Chinese)
[14] 李林娜,陈新亮,刘晨等 2010 光电子·激光 21 4Google Scholar
Li L N, Chen X L, Liu C, et al. 2010 Journal of Optoelectronics·Laser 21 4Google Scholar
[15] 冯丽萍, 刘正堂 2008 材料开发与应用 23 5Google Scholar
Feng L P, Liu Z T 2008 Devel. Appl. Mater. 23 5Google Scholar
[16] 吴伟杰 2016 硕士学位论文 (成都: 电子科技大学)
Wu W J 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[17] Arfaoui A, Mhamdi A, Besrour N, et al. 2018 Thin Solid Films 648 12Google Scholar
[18] He X X, Chow W L, Liu F C, et al. 2017 Small 13 1602558Google Scholar
[19] El-Nahass M M, Farag A M, Abd El-Rahman K F, et al. 2005 Opt. Laser Technol. 37 513Google Scholar
[20] Ambily S, Menon C S 1999 Thin Solid Films 347 284Google Scholar
[21] Farag A A M, Yahia I S 2010 Opt. Commun. 283 4310Google Scholar
[22] Petrenko T, Krylova O, Neese F, et al. 2009 New J. Phys. 11 1367Google Scholar
[23] Mitrofanov O, Lang D V, Kloc C, et al. 2006 Phys. Rev. Lett. 97 166601Google Scholar
[24] Tavazzi S, Borghesi A, Papagni A, et al. 2007 Phys. Rev. B 75 245416Google Scholar
[25] Tuğluoğlu N, Barış B, Gürel H, et al. 2014 J. Alloy Compd. 582 696Google Scholar
[26] 伍春燕, 钟韶, 陈易明等 2002 光谱学与光谱分析 22 495Google Scholar
Wu C Y, Zhong S, Chen Y M, et al. 2002 Spec. Spec. Anal. 22 495Google Scholar
-
Rubrene∶MoO3 4∶1 2∶1 1∶1 1∶2 1∶4 能隙Eg/eV 2.24 2.23 2.25 2.25 2.25 -
[1] Sundar V C, Zaumseil J, Podzorov V, et al. 2004 Science 303 1644Google Scholar
[2] Luo Y, Brun M, Rannou P, et al. 2007 Phys. Status Solidi 204 1851Google Scholar
[3] Park S W, Jeong S H, Choi J M, et al. 2007 Appl. Phys. Lett. 91 26
[4] 邓金祥, 康成龙, 杨冰, 等 2012 真空科学与技术学报 32 678Google Scholar
Deng J X, Kang C L, Yang B, et al. 2012 Chin. J. Vacu. Sci. Tech. 32 678Google Scholar
[5] Ng T W, Lo M F, Yang Q D, et al. 2012 Adv. Func. Mater. 22 3035Google Scholar
[6] Liu Y, Wu X M, Xiao Z H, et al. 2017 Appl. Surf. Sci. 413 302Google Scholar
[7] Hsu C H, Deng J, Staddon C R, et al. 2007 Appl. Phys. Lett. 91 193505Google Scholar
[8] Matsushima T, Jin G H, Kanai Y, et al. 2011 Org. Elec. 12 520Google Scholar
[9] Kubo M, Iketaki K, Kaji T, et al. 2011 Appl. Phys. Lett. 98 40
[10] Nakanotani H, Kakizoe H, Adachi C 2011 Sol. Sta. Com. 151 93Google Scholar
[11] 杨海刚, 尤天友, 宋桂林, 等 2011 真空 48 58Google Scholar
Yang H G, You T Y, Song J L, et al. 2011 Vacuum 48 58Google Scholar
[12] 王娜娜, 于军胜, 王琦, 等 2011 量子电子学报 28 191Google Scholar
Wang N N, Yu J S, Wang Q, et al. 2011 Chin. J. Quan. Elec. 28 191Google Scholar
[13] 刘恩科, 朱秉生, 罗晋生 2017 半导体物理学 (第七版) (北京: 电子工业出版社) 第201页
Liu E K, Zhu B S, Luo J S 2017 The Physics Semiconductors E7 (Beijing: Publishing House of Electronics Industry) p201 (in Chinese)
[14] 李林娜,陈新亮,刘晨等 2010 光电子·激光 21 4Google Scholar
Li L N, Chen X L, Liu C, et al. 2010 Journal of Optoelectronics·Laser 21 4Google Scholar
[15] 冯丽萍, 刘正堂 2008 材料开发与应用 23 5Google Scholar
Feng L P, Liu Z T 2008 Devel. Appl. Mater. 23 5Google Scholar
[16] 吴伟杰 2016 硕士学位论文 (成都: 电子科技大学)
Wu W J 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[17] Arfaoui A, Mhamdi A, Besrour N, et al. 2018 Thin Solid Films 648 12Google Scholar
[18] He X X, Chow W L, Liu F C, et al. 2017 Small 13 1602558Google Scholar
[19] El-Nahass M M, Farag A M, Abd El-Rahman K F, et al. 2005 Opt. Laser Technol. 37 513Google Scholar
[20] Ambily S, Menon C S 1999 Thin Solid Films 347 284Google Scholar
[21] Farag A A M, Yahia I S 2010 Opt. Commun. 283 4310Google Scholar
[22] Petrenko T, Krylova O, Neese F, et al. 2009 New J. Phys. 11 1367Google Scholar
[23] Mitrofanov O, Lang D V, Kloc C, et al. 2006 Phys. Rev. Lett. 97 166601Google Scholar
[24] Tavazzi S, Borghesi A, Papagni A, et al. 2007 Phys. Rev. B 75 245416Google Scholar
[25] Tuğluoğlu N, Barış B, Gürel H, et al. 2014 J. Alloy Compd. 582 696Google Scholar
[26] 伍春燕, 钟韶, 陈易明等 2002 光谱学与光谱分析 22 495Google Scholar
Wu C Y, Zhong S, Chen Y M, et al. 2002 Spec. Spec. Anal. 22 495Google Scholar
计量
- 文章访问数: 10674
- PDF下载量: 96
- 被引次数: 0