-
Transport measurement is one of the most important ways to study the properties of matter. In this article, we discuss recent experiments in ultracold atomic gases where the analog of Landauer transport in mesoscopic devices is realized and spin dynamics in a strongly interacting Fermi gas is probed. In the latter case, we pay special attention to the peculiarity of spin dynamics due to identical spin rotation effect which leads to a novel form of spin diffusion current. This modifies the usual diffusion equation into a more complicated form and leads to important consequence for, in particular, transverse spin diffusion in ultracold Fermi gases.
-
Keywords:
- spin diffusion /
- Landauer transport /
- Landau-Boltzmann equation /
- identical spin rotation effect
[1] Elliott E, Joseph J A, Thomas J E 2014 Phys. Rev. Lett. 112 040405
Google Scholar
[2] Krinner S, Esslinger T, Brantut J 2017 J. Phys.: Condens. Matter 29 343003
Google Scholar
[3] Anderson R, Wang F D, Xu P H, Venu V, Trotzky S, Chevy F, Thywissen J H 2017 arXiv: 1712.09965
[4] Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Bergeron S, Tremblay A M S, Kokalj J, Huse D, Schauss P, Bakr W S 2018, arXiv: 1802.09456
[5] Nichols M A, Cheuk L W, Okan M, Hartke T R, Mendez E, Senthil T, Khatami E, Zhang H, Zwierlein M W 2018 arXiv: 1802.10018
[6] Sommer A, Ku M, Roati G, Zwierlein M W 2011 Nature 472 201
Google Scholar
[7] Bardon A B, Beattie S, Luciuk C, Cairncross W, Fine D, Cheng N S, Edge G J A, Taylor E, Zhang S Z, Trotzky S, Thywissen J H 2014 Science 344 722
Google Scholar
[8] Koschorreck M, Pertot D, Vogt E, Köhl M 2013 Nature Physics 9 1
[9] Luciuk C, Smale S, Böttcher F, Sharum H, Olsen B A, Trotzky S, Enss T, and Thywissen J H 2017 Phys. Rev. Lett. 118 130405
Google Scholar
[10] Leggett A 2001 Rev. Mod. Phys. 73 307
Google Scholar
[11] Pethick C J, Smith H 2011, Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) p109
[12] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Clarendon Press) p129
[13] Braaten E, Hagen P, Hammer H W, and Platter L 2012 Phys. Rev. A 86 012711
Google Scholar
[14] Bertulani C A, Hammer H W and van Kolck U 2002 Nuclear Physics A 712 37
Google Scholar
[15] Yu Z H, Thywissen J H, and Zhang S Z 2015 Phys. Rev. Lett. 115 135304
Google Scholar
[16] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
Google Scholar
[17] Leggett A 2006 Quantum Liquids (Oxford: Oxford University Press) p120
[18] Uchino S and Ueda M 2017 Phys. Rev. Lett. 118 105303
Google Scholar
[19] Liu B, Zhai H and Zhang S Z 2017 Phys. Rev. A 95 013623
Google Scholar
[20] Kanász-Nagy M, Glazman L, Esslinger T and Demler E 2016 Phys. Rev. Lett. 117 255302
Google Scholar
[21] Thomas S 2014 Annual Review of Nuclear and Particle Science 64 125
Google Scholar
[22] Joseph J A, Elliott E, and Thomas J E 2015 Phys. Rev. Lett. 115 020401
Google Scholar
[23] Leggett A 1969 J. Phys. C, Solid St. Physics 3 448
[24] Lhuillier C, Laloë F 1982 J. Physique 43 197
Google Scholar
[25] Cohen-Tannoudji C and Guéry-Odelin D 2011 Advances In Atomic Physics: An Overview (Singapore: World Scientific) p497
[26] Bruun G M 2011 New J. Phys. 13 035005
Google Scholar
[27] Enss T 2013 Phys. Rev. A 88 033630
Google Scholar
[28] Trotzky S, Beattie S, Luciuk C, Smale S, Bardon A B, Enss T, Taylor E, Zhang S Z, and Thywissen J H 2015 Phys. Rev. Lett. 114 015301
Google Scholar
[29] Hartnoll S, Lucas A, Sachdev S 2018 Holographic Quantum Matter (Cambridge: MIT Press) p334
-
表 1 冷原子物理研究中的三个不同区域
Table 1. Three different regimes in the study of cold atom physics.
长度尺度 备注 经典气体 ${\lambda _T} < {r_0} < d$ 经典散射;
麦克斯韦-玻尔兹曼经典分布量子气体 ${r_0} < {\lambda _T} < d$ 量子散射;
麦克斯韦-玻尔兹曼经典分布量子简并气体 ${r_0} < d < {\lambda _T}$ 量子散射;
玻色-爱因斯坦或者费米-
狄拉克分布表 2 强相互作用费米系统的自旋扩散系数
Table 2. Spin diffusion constants for strongly interacting Fermi gases.
-
[1] Elliott E, Joseph J A, Thomas J E 2014 Phys. Rev. Lett. 112 040405
Google Scholar
[2] Krinner S, Esslinger T, Brantut J 2017 J. Phys.: Condens. Matter 29 343003
Google Scholar
[3] Anderson R, Wang F D, Xu P H, Venu V, Trotzky S, Chevy F, Thywissen J H 2017 arXiv: 1712.09965
[4] Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Bergeron S, Tremblay A M S, Kokalj J, Huse D, Schauss P, Bakr W S 2018, arXiv: 1802.09456
[5] Nichols M A, Cheuk L W, Okan M, Hartke T R, Mendez E, Senthil T, Khatami E, Zhang H, Zwierlein M W 2018 arXiv: 1802.10018
[6] Sommer A, Ku M, Roati G, Zwierlein M W 2011 Nature 472 201
Google Scholar
[7] Bardon A B, Beattie S, Luciuk C, Cairncross W, Fine D, Cheng N S, Edge G J A, Taylor E, Zhang S Z, Trotzky S, Thywissen J H 2014 Science 344 722
Google Scholar
[8] Koschorreck M, Pertot D, Vogt E, Köhl M 2013 Nature Physics 9 1
[9] Luciuk C, Smale S, Böttcher F, Sharum H, Olsen B A, Trotzky S, Enss T, and Thywissen J H 2017 Phys. Rev. Lett. 118 130405
Google Scholar
[10] Leggett A 2001 Rev. Mod. Phys. 73 307
Google Scholar
[11] Pethick C J, Smith H 2011, Bose–Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press) p109
[12] Pitaevskii L P and Stringari S 2003 Bose-Einstein Condensation (Oxford: Clarendon Press) p129
[13] Braaten E, Hagen P, Hammer H W, and Platter L 2012 Phys. Rev. A 86 012711
Google Scholar
[14] Bertulani C A, Hammer H W and van Kolck U 2002 Nuclear Physics A 712 37
Google Scholar
[15] Yu Z H, Thywissen J H, and Zhang S Z 2015 Phys. Rev. Lett. 115 135304
Google Scholar
[16] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
Google Scholar
[17] Leggett A 2006 Quantum Liquids (Oxford: Oxford University Press) p120
[18] Uchino S and Ueda M 2017 Phys. Rev. Lett. 118 105303
Google Scholar
[19] Liu B, Zhai H and Zhang S Z 2017 Phys. Rev. A 95 013623
Google Scholar
[20] Kanász-Nagy M, Glazman L, Esslinger T and Demler E 2016 Phys. Rev. Lett. 117 255302
Google Scholar
[21] Thomas S 2014 Annual Review of Nuclear and Particle Science 64 125
Google Scholar
[22] Joseph J A, Elliott E, and Thomas J E 2015 Phys. Rev. Lett. 115 020401
Google Scholar
[23] Leggett A 1969 J. Phys. C, Solid St. Physics 3 448
[24] Lhuillier C, Laloë F 1982 J. Physique 43 197
Google Scholar
[25] Cohen-Tannoudji C and Guéry-Odelin D 2011 Advances In Atomic Physics: An Overview (Singapore: World Scientific) p497
[26] Bruun G M 2011 New J. Phys. 13 035005
Google Scholar
[27] Enss T 2013 Phys. Rev. A 88 033630
Google Scholar
[28] Trotzky S, Beattie S, Luciuk C, Smale S, Bardon A B, Enss T, Taylor E, Zhang S Z, and Thywissen J H 2015 Phys. Rev. Lett. 114 015301
Google Scholar
[29] Hartnoll S, Lucas A, Sachdev S 2018 Holographic Quantum Matter (Cambridge: MIT Press) p334
计量
- 文章访问数: 8912
- PDF下载量: 164
- 被引次数: 0