搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧空位缺陷对PbTiO3铁电薄膜漏电流的调控

佘彦超 张蔚曦 王应 罗开武 江小蔚

引用本文:
Citation:

氧空位缺陷对PbTiO3铁电薄膜漏电流的调控

佘彦超, 张蔚曦, 王应, 罗开武, 江小蔚

Effect of oxygen vacancy defect on leakage current of PbTiO3 ferroelectric thin film

She Yan-Chao, Zhang Wei-Xi, Wang Ying, Luo Kai-Wu, Jiang Xiao-Wei
PDF
导出引用
  • 基于非平衡格林函数及密度泛函理论第一性原理计算方法,计算了Fe,Al,V和Cu四种阳离子掺杂对氧空位缺陷引起的PbTiO3铁电薄膜漏电流的调控.研究表明:Fe和Al离子掺杂将会增大由其中氧空位缺陷导致的铁电薄膜的漏电流,而Cu和V离子掺杂对该漏电流的大小具有明显抑制作用.这是因为Cu和V掺杂对氧空位缺陷有明显的钉扎作用.相比于半径更大的Cu离子,由于V的离子半径更小,且更接近于PbTiO3铁电薄膜中Ti的离子半径,可以预言V离子更可能被掺杂进入薄膜,从而抑制氧空位缺陷引起的漏电流.研究结果对铁电薄膜器件的电学性能控制和优化有一定的理论指导意义.
    Ferroelectric (FE) materials have been extensively applied to the multifunctional electronic devices, particularly the FE memories due to their excellent physical properties. The FE memory is a kind of nonvolatile memory device, and it could overcome the shortcomings of the traditional memory. But the development of the FE memory is very slow due to the FE failure problem. However, with the continuous decrease of the thickness of FE thin film, when it reaches microns or nanometers in magnitude, the leakage current is the main cause of the FE failure of FE thin film. The leakage current of FE thin film is directly related to whether the FE memory is applicable, and it has been the hot spot of scientific researches. There are still a lot of factors influencing the FE memory leakage current except for the thickness of the film, such as interface, processing temperature, defect, domain wall, etc. Of these factors, the defect and domain wall are the most common and the most probable. In this paper, the first-principle calculation method through combining the density function theory with the nonequilibrium Green's function is used to systematically study the influence of oxygen vacancy defect on the leakage current of the FE thin film. The doping with four kinds of Cu, Al, V, and Fe cations is used to regulate and control the leakage current of the FE thin PbTiO3 film caused by the oxygen vacancy defects. We investigate the leakage current induced by oxygen vacancies in PbTiO3 films, and the doped PbTiO3 thin FE films having oxygen vacancies. It is found that Fe and Al doping will increase the leakage current of oxygen vacancy defects of FE thin films, while the Cu and V doping significantly reduce the leakage current of oxygen vacancy defects of FE thin films. This is because the Cu and V doping have obvious pinning effect on oxygen vacancy defect. In addition, we find that the oxygen vacancies are pinned by Cu and V atoms due to the fact that the formation energy of oxygen vacancies can be remarkably reduced. So Cu and V doping in PbTiO3 not only induce the leakage current but also improve the fatigue resistance of the FE thin film induced by oxygen vacancies. Moreover, since the ionic radius of V is closer to the ionic radius of Ti than the ionic radius of Cu, V is easier to implement doping to suppress the leakage current caused by the oxygen vacancy defects. These conclusions are of important theoretical significance and application value for improving the performance of FE thin films and their FE memories.
      通信作者: 张蔚曦, zhangwwxx@sina.com
    • 基金项目: 国家自然科学基金(批准号:11747168,11604246)、贵州省教育厅科研项目(批准号:KY[2015]384,KY[2015]446,KY[2017]053)、贵州省科技厅联合基金项目(批准号:LH[2015]7228)和铜仁学院博士启动课题项目(批准号:trxyDH1529)资助的课题.
      Corresponding author: Zhang Wei-Xi, zhangwwxx@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11747168, 11604246), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY[2015]384, KY[2015]446, KY[2017]053), the Natural Science Foundation of Science and Technology Agency of Guizhou Province, China (Grant No. LH[2015]7228), and the Science Research Foundation of Tongren University, China (Grant No. trxyDH1529).
    [1]

    Scott J F, de Araujo C A P 1989 Science 246 1400

    [2]

    Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]

    [3]

    Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413

    [4]

    Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486

    [5]

    de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145

    [6]

    Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750

    [7]

    Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602

    [8]

    Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602

    [9]

    Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014

    [10]

    Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201

    [11]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181

    [12]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 53 1265]

    [13]

    Jia C, Urban K 2004 Science 303 2001

    [14]

    Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116

    [15]

    Park C, Chadi D 1998 Phys. Rev. B 57 13961

    [16]

    Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 59 1302]

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747

    [20]

    Baldereschi A 1973 Phys. Rev. B 7 5212

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]

    [23]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253

    [24]

    Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382

    [25]

    Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

  • [1]

    Scott J F, de Araujo C A P 1989 Science 246 1400

    [2]

    Wen J H, Yang Q, Can J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 62 067701]

    [3]

    Morozovska A N, Eliseev E A, Morozovsky N V, Kalinin S V 2017 Phys. Rev. B 95 195413

    [4]

    Huang F, Chen X, Liang X, Qin J, Zhang Y, Huang T, Wang Z, Peng B, Zhou P, Lu H, Zhang L, Deng L, Liu M, Liu Q, Tian H, Bi L 2017 Phys. Chem. Chem. Phys. 19 3486

    [5]

    de Luca G, Rossell M D, Schaab J, Viart N, Fiebig M, Trassin M 2017 Adv. Mater. 29 1605145

    [6]

    Saremi S, Xu R, Dedon L R, Mundy J A, Hsu S 2016 Adv. Mater. 28 10750

    [7]

    Chen L, Yang Y, Gui Z G, Sando D, Bibes M, Meng X K, Bellaiche L 2015 Phys. Rev. Lett. 115 267602

    [8]

    Jo J Y, Han H S, Yoon J G, Song T K, Kim S H, Noh T W 2007 Phys. Rev. Lett. 99 267602

    [9]

    Sudhama C, Campbell A, Maniar P, Jones R, Moazzami R, Mogab C, Lee J 1994 J. Appl. Phys. 75 1014

    [10]

    Velev J P, Duan C G, Belashchenko K D, Jaswal S S, Tsymbal E Y 2007 Phys. Rev. Lett. 98 137201

    [11]

    Tsymbal E Y, Kohlstedt H 2006 Science 313 181

    [12]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 53 1265]

    [13]

    Jia C, Urban K 2004 Science 303 2001

    [14]

    Erhart P, Eichel R, Trskelin P, Albe K 2007 Phys. Rev. B 76 174116

    [15]

    Park C, Chadi D 1998 Phys. Rev. B 57 13961

    [16]

    Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X, Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese) [李建军, 于军, 李佳, 王梦, 李玉斌, 吴云翼, 高俊雄, 王耘波 2010 59 1302]

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Chadi D, Cohen M L 1973 Phys. Rev. B 8 5747

    [20]

    Baldereschi A 1973 Phys. Rev. B 7 5212

    [21]

    Brandbyge M, Mozos J L, Ordejn P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [22]

    Li Z B, Wang X, Jia L C 2013 Acta Phys. Sin. 62 203103 (in Chinese) [李宗宝, 王霞, 贾礼超 2013 62 203103]

    [23]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, van de Walle C 2014 Rev. Mod. Phys. 86 253

    [24]

    Scott J, Araujo A, Melnick B, McMillan L, Zuleeg R 1991 J. Appl. Phys. 70 382

    [25]

    Pykk S, Chadi D J 1999 Phys. Rev. Lett. 83 1231

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算.  , 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试.  , 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [3] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] 石志鑫, 周大雨, 李帅东, 徐进, UweSchröder. 一阶回转曲线图谱法及其在HfO2基铁电薄膜极化翻转行为研究中的应用.  , 2021, 70(12): 127702. doi: 10.7498/aps.70.20210115
    [5] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [6] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [7] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算.  , 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [8] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究.  , 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [9] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应.  , 2016, 65(8): 088101. doi: 10.7498/aps.65.088101
    [10] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算.  , 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [11] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [12] 谢东, 冷永祥, 黄楠. C掺杂TiO薄膜的制备及其第一性原理研究.  , 2013, 62(19): 198103. doi: 10.7498/aps.62.198103
    [13] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型.  , 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [14] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控.  , 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [15] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究.  , 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究.  , 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] 王秀章, 刘红日. La0.3Sr0.7TiO3模板层对Pb(Zr0.5Ti0.5)O3薄膜的铁电性能增强效应的研究.  , 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [19] 杨昌平, 陈顺生, 戴 琪, 郭定和, 王 浩. Nd0.67Sr0.33MnOy(y<3.0)中的自旋相关电致电阻效应.  , 2007, 56(8): 4908-4913. doi: 10.7498/aps.56.4908
    [20] 贾建峰, 黄 凯, 潘清涛, 李世国, 贺德衍. 溶胶-凝胶法制备MgO/(Ba0.8Sr0.2)TiO3多层薄膜及其介电和漏电特性研究.  , 2006, 55(4): 2069-2072. doi: 10.7498/aps.55.2069
计量
  • 文章访问数:  7365
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-10
  • 修回日期:  2018-08-02
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map