-
实时密度泛函理论是基于含时Kohn-Sham方程,从实空间实时模拟材料激发态性质的第一性原理计算方法.本文介绍如何利用基于数值原子轨道基的含时密度泛函理论和软件TDAP(Time Dependent Ab initio Package),研究凝聚态物质与光场之间的相互作用.通过引入电磁场的长度规范和速度规范,该方法的适用范围从低维结构拓展到固体材料,且不受微扰论的限制,实现了对大规模、真实凝聚态体系的动力学性质的精确模拟.文中以几个有代表性的工作为例,说明该方法对于研究量子系统中新奇的超快量子动力学现象有着广泛的应用前景.Real-time time dependent density functional theory (rt-TDDFT) approach directly provides the time domain evolution of electronic wave functions together with ionic movements, presenting a versatile way of real time tracking ultrafast dynamics and phenomena either in perturbative regime or in non-perturbative regime. Thus, rt-TDDFT is a unique ab initio quantum method applicable for the exploration of strong field physics that is beyond the linear response theory. Numerical implementations of the rt-TDDFT based on planewaves and real-space grids have been demonstrated in recent years. However, the above two methods are suitable for the efficient treatment of low energy excitation on the scale of a few electron volts in a small size system. In this paper, we present a state-of-the-art real-time TDDFT approach as implemented in the time dependent ab initio package (TDAP). By employing atomic orbital basis sets, which are small in size and fast in performance, we are able to simulate a large-size system for long electronic propagation time with less computational cost while maintaining relatively high accuracy. The length and velocity-gauge of electromagnetic field are both implemented, showing the flexibility and credibility in applying our methods to various laser induced phenomena in diverse systems including solids, interfaces and two-dimensional materials. Furthermore, recently developed k-resolved algorithm ensures the possibility of handling the problems with a unit cell approach, which significantly reduces the formidable computational costs of traditional rt-TDDFT simulations. Detailed flow and implementation of this method are discussed in this paper, and several quintessential examples for applications are introduced. First, we use the present method to calculate the photoabsorption properties of armchair graphene nanoribbons and monitor the excitation details with momentum resolution. Then, we simulate laser melting of silicon, which captures the most important features of nonthermal melting observed in experiment, and further reveals that it can be attributed to drastic laser-induced change in bonding electron density and subsequent decrease in the melting barrier. After that, a model MoS2/WS2 bilayer system is used as an example to show how our method can be used to monitor the electronic dynamics in such a van der Waals heterostructure. Finally, we show the possibility of controlling the electron dynamic process to enhance high harmonic generation intensity and generate isolated attosecond pulse in monolayer MoS2 via two-color field. Most of the above examples present new ideas in their respective areas and demonstrate that our method has a great potential application in studying interesting ultrafast dynamics phenomena in a wide range of quantum systems.
-
Keywords:
- real-time time dependent density functional theory /
- quantum dynamics /
- numerical atomic basis /
- excited-state simulation
[1] Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997
[2] Ullrich C A 2011 Time-Dependent Density-Functional Theory:Concepts And Applications (Oxford:Oxford University Press)
[3] Sato S, Yabana K, Shinohara Y, Otobe T, Lee K M, Bertsch G 2015 Phys. Rev. B 92 205413
[4] Takimoto Y, Vila F, Rehr J 2007 J. Chem. Phys. 127 154114
[5] Snchez-Portal D, Hernandez E 2002 Phys. Rev. B 66 235415
[6] Lopata K, Govind N 2011 J. Chem. Theory Comput. 7 1344
[7] Yabana K, Sugiyama T, Shinohara Y, Otobe T, Bertsch G 2012 Phys. Rev. B 85 045134
[8] Castro A, Werschnik J, Gross E K 2012 Phys. Rev. Lett. 109 153603
[9] Yost D C, Yao Y, Kanai Y 2017 Phys. Rev. B 96 115134
[10] Andrade X, Strubbe D, de Giovannini U, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J 2015 Phys. Chem. Chem. Phys. 17 31371
[11] Sato S A, Yabana K 2014 J. Adv. Simulat. Sci. Eng. 1 98
[12] Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110
[13] Ma W, Zhang J, Yan L, Jiao Y, Gao Y, Meng S 2016 Comp. Mater. Sci. 112 478
[14] Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745
[15] Ordejn P, Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441
[16] Yabana K, Nakatsukasa T, Iwata J I, Bertsch G 2006 Phys. Status Solidi (b) 243 1121
[17] Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004
[18] Ren J, Vukmirović N, Wang L W 2013 Phys. Rev. B 87 205117
[19] Ren J, Kaxiras E, Meng S 2010 Mol. Phys. 108 1829
[20] Rohringer N, Peter S, Burgdrfer J 2006 Phys. Rev. A 74 042512
[21] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[22] Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801
[23] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotech. 7 330
[24] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R 2011 Nat. Nanotech. 6 630
[25] Yang L, Deslippe J, Park C H, Cohen M L, Louie S G 2009 Phys. Rev. Lett. 103 186802
[26] Trevisanutto P E, Holzmann M, Ct M, Olevano V 2010 Phys. Rev. B 81 121405
[27] Gomez C V, Pisarra M, Gravina M, Pitarke J M, Sindona A 2016 Phys. Rev. Lett. 117 116801
[28] Ostrikov K K, Beg F, Ng A 2016 Rev. Mod. Phys. 88 011001
[29] Shank C, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454
[30] Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R D 2008 Phys. Rev. Lett. 100 155504
[31] Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, von Hoegen M H, von der Linde D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701
[32] Porer M, Leierseder U, Mnard J M, Dachraoui H, Mouchliadis L, Perakis I, Heinzmann U, Demsar J, Rossnagel K, Huber R 2014 Nat. Mater. 13 857
[33] Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallne M, Marczynski-Bhlow M, Hennies F, Bauer M 2010 Phys. Rev. Lett. 105 187401
[34] Lian C, Zhang S, Meng S 2016 Phys. Rev. B 94 184310
[35] Zijlstra E S, Kalitsov A, Zier T, Garcia M E 2013 Phys. Rev. X 3 011005
[36] Falke S M, Rozzi C A, Brida D, Maiuri M, Amato M, Sommer E, de Sio A, Rubio A, Cerullo G, Molinari E 2014 Science 344 1001
[37] Rozzi C A, Falke S M, Spallanzani N, Rubio A, Molinari E, Brida D, Maiuri M, Cerullo G, Schramm H, Christoffers J 2013 Nat. Commun. 4 1602
[38] Zhang J, Hong H, Lian C, Ma W, Xu X, Zhou X, Fu H, Liu K, Meng S 2017 Adv. Sci. 4 1700086
[39] van der Zande A M, Kunstmann J, Chernikov A, Chenet D A, You Y, Zhang X, Huang P Y, Berkelbach T C, Wang L, Zhang F 2014 Nano Lett. 14 3869
[40] Long R, Prezhdo O V 2016 Nano Lett. 16 1996
[41] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520
[42] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498
[43] Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462
[44] Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2016 Nat. Phys. 13 262
[45] Li J B, Zhang X, Yue S J, Wu H M, Hu B T, Du H C 2017 Opt. Express 25 18603
[46] Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902
-
[1] Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997
[2] Ullrich C A 2011 Time-Dependent Density-Functional Theory:Concepts And Applications (Oxford:Oxford University Press)
[3] Sato S, Yabana K, Shinohara Y, Otobe T, Lee K M, Bertsch G 2015 Phys. Rev. B 92 205413
[4] Takimoto Y, Vila F, Rehr J 2007 J. Chem. Phys. 127 154114
[5] Snchez-Portal D, Hernandez E 2002 Phys. Rev. B 66 235415
[6] Lopata K, Govind N 2011 J. Chem. Theory Comput. 7 1344
[7] Yabana K, Sugiyama T, Shinohara Y, Otobe T, Bertsch G 2012 Phys. Rev. B 85 045134
[8] Castro A, Werschnik J, Gross E K 2012 Phys. Rev. Lett. 109 153603
[9] Yost D C, Yao Y, Kanai Y 2017 Phys. Rev. B 96 115134
[10] Andrade X, Strubbe D, de Giovannini U, Larsen A H, Oliveira M J, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J 2015 Phys. Chem. Chem. Phys. 17 31371
[11] Sato S A, Yabana K 2014 J. Adv. Simulat. Sci. Eng. 1 98
[12] Meng S, Kaxiras E 2008 J. Chem. Phys. 129 054110
[13] Ma W, Zhang J, Yan L, Jiao Y, Gao Y, Meng S 2016 Comp. Mater. Sci. 112 478
[14] Soler J M, Artacho E, Gale J D, Garca A, Junquera J, Ordejn P, Snchez-Portal D 2002 J. Phys. Condens. Matter 14 2745
[15] Ordejn P, Artacho E, Soler J M 1996 Phys. Rev. B 53 R10441
[16] Yabana K, Nakatsukasa T, Iwata J I, Bertsch G 2006 Phys. Status Solidi (b) 243 1121
[17] Wang Z, Li S S, Wang L W 2015 Phys. Rev. Lett. 114 063004
[18] Ren J, Vukmirović N, Wang L W 2013 Phys. Rev. B 87 205117
[19] Ren J, Kaxiras E, Meng S 2010 Mol. Phys. 108 1829
[20] Rohringer N, Peter S, Burgdrfer J 2006 Phys. Rev. A 74 042512
[21] Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803
[22] Yang L, Park C H, Son Y W, Cohen M L, Louie S G 2007 Phys. Rev. Lett. 99 186801
[23] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F 2012 Nat. Nanotech. 7 330
[24] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R 2011 Nat. Nanotech. 6 630
[25] Yang L, Deslippe J, Park C H, Cohen M L, Louie S G 2009 Phys. Rev. Lett. 103 186802
[26] Trevisanutto P E, Holzmann M, Ct M, Olevano V 2010 Phys. Rev. B 81 121405
[27] Gomez C V, Pisarra M, Gravina M, Pitarke J M, Sindona A 2016 Phys. Rev. Lett. 117 116801
[28] Ostrikov K K, Beg F, Ng A 2016 Rev. Mod. Phys. 88 011001
[29] Shank C, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454
[30] Harb M, Ernstorfer R, Hebeisen C T, Sciaini G, Peng W, Dartigalongue T, Eriksson M A, Lagally M G, Kruglik S G, Miller R D 2008 Phys. Rev. Lett. 100 155504
[31] Sokolowski-Tinten K, Blome C, Dietrich C, Tarasevitch A, von Hoegen M H, von der Linde D, Cavalleri A, Squier J, Kammler M 2001 Phys. Rev. Lett. 87 225701
[32] Porer M, Leierseder U, Mnard J M, Dachraoui H, Mouchliadis L, Perakis I, Heinzmann U, Demsar J, Rossnagel K, Huber R 2014 Nat. Mater. 13 857
[33] Hellmann S, Beye M, Sohrt C, Rohwer T, Sorgenfrei F, Redlin H, Kallne M, Marczynski-Bhlow M, Hennies F, Bauer M 2010 Phys. Rev. Lett. 105 187401
[34] Lian C, Zhang S, Meng S 2016 Phys. Rev. B 94 184310
[35] Zijlstra E S, Kalitsov A, Zier T, Garcia M E 2013 Phys. Rev. X 3 011005
[36] Falke S M, Rozzi C A, Brida D, Maiuri M, Amato M, Sommer E, de Sio A, Rubio A, Cerullo G, Molinari E 2014 Science 344 1001
[37] Rozzi C A, Falke S M, Spallanzani N, Rubio A, Molinari E, Brida D, Maiuri M, Cerullo G, Schramm H, Christoffers J 2013 Nat. Commun. 4 1602
[38] Zhang J, Hong H, Lian C, Ma W, Xu X, Zhou X, Fu H, Liu K, Meng S 2017 Adv. Sci. 4 1700086
[39] van der Zande A M, Kunstmann J, Chernikov A, Chenet D A, You Y, Zhang X, Huang P Y, Berkelbach T C, Wang L, Zhang F 2014 Nano Lett. 14 3869
[40] Long R, Prezhdo O V 2016 Nano Lett. 16 1996
[41] Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520
[42] Luu T T, Garg M, Kruchinin S Y, Moulet A, Hassan M T, Goulielmakis E 2015 Nature 521 498
[43] Vampa G, Hammond T J, Thire N, Schmidt B E, Legare F, McDonald C R, Brabec T, Corkum P B 2015 Nature 522 462
[44] Liu H, Li Y, You Y S, Ghimire S, Heinz T F, Reis D A 2016 Nat. Phys. 13 262
[45] Li J B, Zhang X, Yue S J, Wu H M, Hu B T, Du H C 2017 Opt. Express 25 18603
[46] Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Legare F, Giguere M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902
计量
- 文章访问数: 8738
- PDF下载量: 632
- 被引次数: 0