搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Er2O3薄膜型热辐射体的制备与性能研究

刘士彦 姚博 谭永胜 徐海涛 冀婷 方泽波

引用本文:
Citation:

Er2O3薄膜型热辐射体的制备与性能研究

刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波

Preparation and performance study of Er2O3 film selective thermal emitter

Liu Shi-Yan, Yao Bo, Tan Yong-Sheng, Xu Hai-Tao, Ji Ting, Fang Ze-Bo
PDF
导出引用
  • 调制辐射体的可见和近红外区域的辐射光谱与光伏电池吸收光谱的匹配是开发高性能热光伏电池技术的关键.采用电子束蒸发在单晶硅衬底上制备金属Er薄膜并进行后氧化处理制备Er2O3薄膜型辐射体.X射线衍射结果表明薄膜结晶良好,且Si基底对Er2O3薄膜的晶体结构没有显著影响.X射线光电子能谱拟合结果表明薄膜中Er元素和O元素符合Er2O3的化学计量比.高温近红外光谱测试结果表明,样品在1550 nm左右出现了明显的Er3+离子的特征辐射峰,这与GaSb光电池的吸收光谱相匹配.
    Solar thermophotovoltaic (STPV) generator is a popular energy converter due to providing low noise, low thermal mechanical stress and portability. It has the ability to exceed the efficiency of pure solar photovoltaic system. An idealized STPV generator is a reversible heat-engine, offering a theoretical efficiency of over 80%, but the actual conversion efficiency of STPV generator is still low due to the mistuned spectral property between the thermal selective emitter and the TPV cell. One key issue in developing the STPV generator with high performance is the spectral matching between the thermal radiation spectrum of radiator and the spectral response of photovoltaic cell in visible and near-infrared region, which usually lies between the visible and the near-infrared region. High-temperature spectral emissivity of rare earth oxide is of special interest, because the radiation has a narrow band of wavelengths in the near infrared and infrared region from 900 to 3000 nm. In this work, the thermal-selective film Er2O3 emitter is fabricated by post-oxidation of Er film deposited on Si substrate through using electron-beam gun evaporation. Based on the X-ray diffraction results, the Er2O3 film is of cubic phase structure and well-crystallized when the oxidation temperature is 700℃, and the Si substrate has no obvious influence on the crystal structure of Er2O3 film. According to the X-ray photoelectron spectroscopy results of the Er2O3 film after thermal oxidation at 700℃, the atomic ratio of Er/O is stoichiometric. In order to obtain the selective emission characteristic of the Er2O3 film, a measurement system is designed. The system consists of two major portions, i.e., one is a near infrared spectrometer purchased from Ocean Optics, the other is a high-temperature emission characteristic tester which can provide oxyhydrogen flame to heat the sample by using an electronic impulse ignition to torch the hydrogen-oxygen mixture. The oxyhydrogen flame passes through the nozzle and sprays vertically on the surface of the thermal-selective emitter sample. The facula of the oxyhydrogen flame convergence is very small (facula diameter:~0.8 cm), and the highest temperature achieved is about 2500℃. The measurement condition of selective emission performance of the Er2O3 film emitter coincides with the application characteristic of STPV generator. The emission performance result of the film emitter at 700℃ shows a typical gray-body emission characteristic. The measurements carried out at 900 and 1100℃ show that the Er2O3 film has a distinct emittance spectrum at 1550 nm corresponding to Er3+, and the intensity of the selective emission peak strengthens with the measuring temperature or film thickness increasing. The thermal-selective film Er2O3 emitter is found to have emission spectrum suitable for efficient matching with the infrared response of GaSb photovoltaic cell.
      通信作者: 方泽波, csfzb@usx.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61405118,61504082)、浙江省自然科学基金(批准号:LY15A040001,LQ16F040001)、山西省自然科学基金(批准号:201601D021051)和绍兴市科技计划项目(批准号:2015B70009)资助的课题.
      Corresponding author: Fang Ze-Bo, csfzb@usx.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61405118, 61504082), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY15A040001, LQ16F040001), the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D021051), and the Scientific and Technical Plan Project of Shaoxing City, China (Grant No. 2015B70009).
    [1]

    Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 57302

    [2]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805]

    [3]

    Peng H L, Zhang W, Sun L J, Ma S D, Shi Y, Liang H W, Zhang Y J, Zheng W H 2014 Acta Phys. Sin. 63 178801 (in Chinese) [彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华 2014 63 178801]

    [4]

    Seyf H R, Henry A 2016 Energ. Environ. Sci. 9 2654

    [5]

    Daneshvar H, Prinja R, Kherani N P 2015 Appl. Energ. 159 560

    [6]

    Karalis A, Joannopoulos J D 2015 Appl. Phys. Lett. 107 141108

    [7]

    Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1

    [8]

    Wang H C, Wen L, Song S C, Hu X, Xu G Q 2015 Photon. Res. 3 329

    [9]

    Zhou Z G, Yehia O, Bermel P 2016 J. Nanophoton. 10 016014

    [10]

    Diso D, Licciulli A, Bianco A, Lomascolo M, Leo G, Mazzer M, Tundo S, Torsello G, Maffezzoli A 2003 Mater. Sci. Eng. B 98 144

    [11]

    Guazzoni G E 1972 Appl. Spectrosc. 26 60

    [12]

    Fraas L M, Girard G R, Avery J E, Arau B A, Sundaram V S 1989 J. Appl. Phys. 66 3866

    [13]

    Licciulli A, Maffezzoli A, Diso D, Tundo S, Rella M, Torsello G, Mazzer M 2003 J. Sol-Gel Sci. Technol. 26 1119

    [14]

    Tobler W J, Durisch W 2008 Appl. Energ. 85 483

    [15]

    Chubb D L, Good B S, Chen Z 1997 AIP Conf. Proc. 401 293

    [16]

    Chubb D L, Lowe R A 1993 J. Appl. Phys. 74 5687

    [17]

    Narayanaswamy A, Canetta C 2014 Appl. Phys. Lett. 104 183107

    [18]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [19]

    Mikhelashvili V, Eisenstein G, Edelmann F 2002 Appl. Phys. Lett. 80 2156

    [20]

    Pam T M, Chen C L, Yeh W W, Hou S J 2006 Appl. Phys. Lett. 89 222912

    [21]

    Dakhel A A 2006 Mater. Chem. Phys. 100 366

    [22]

    Chen S, Zhu Y Y, Wu R, Wu Y Q, Fan Y L, Jiang Z M 2007 J. Appl. Phys. 101 064106

    [23]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G, Malandrino G, Fragalà I L, Armelao L, Barreca D, Tondello E 2008 J. Electrochem. Soc. 155 44

    [24]

    Pan T M, Shu W H, Hong J L 2007 Appl. Phys. Lett. 90 222906

  • [1]

    Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 57302

    [2]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 64 038805]

    [3]

    Peng H L, Zhang W, Sun L J, Ma S D, Shi Y, Liang H W, Zhang Y J, Zheng W H 2014 Acta Phys. Sin. 63 178801 (in Chinese) [彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华 2014 63 178801]

    [4]

    Seyf H R, Henry A 2016 Energ. Environ. Sci. 9 2654

    [5]

    Daneshvar H, Prinja R, Kherani N P 2015 Appl. Energ. 159 560

    [6]

    Karalis A, Joannopoulos J D 2015 Appl. Phys. Lett. 107 141108

    [7]

    Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1

    [8]

    Wang H C, Wen L, Song S C, Hu X, Xu G Q 2015 Photon. Res. 3 329

    [9]

    Zhou Z G, Yehia O, Bermel P 2016 J. Nanophoton. 10 016014

    [10]

    Diso D, Licciulli A, Bianco A, Lomascolo M, Leo G, Mazzer M, Tundo S, Torsello G, Maffezzoli A 2003 Mater. Sci. Eng. B 98 144

    [11]

    Guazzoni G E 1972 Appl. Spectrosc. 26 60

    [12]

    Fraas L M, Girard G R, Avery J E, Arau B A, Sundaram V S 1989 J. Appl. Phys. 66 3866

    [13]

    Licciulli A, Maffezzoli A, Diso D, Tundo S, Rella M, Torsello G, Mazzer M 2003 J. Sol-Gel Sci. Technol. 26 1119

    [14]

    Tobler W J, Durisch W 2008 Appl. Energ. 85 483

    [15]

    Chubb D L, Good B S, Chen Z 1997 AIP Conf. Proc. 401 293

    [16]

    Chubb D L, Lowe R A 1993 J. Appl. Phys. 74 5687

    [17]

    Narayanaswamy A, Canetta C 2014 Appl. Phys. Lett. 104 183107

    [18]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [19]

    Mikhelashvili V, Eisenstein G, Edelmann F 2002 Appl. Phys. Lett. 80 2156

    [20]

    Pam T M, Chen C L, Yeh W W, Hou S J 2006 Appl. Phys. Lett. 89 222912

    [21]

    Dakhel A A 2006 Mater. Chem. Phys. 100 366

    [22]

    Chen S, Zhu Y Y, Wu R, Wu Y Q, Fan Y L, Jiang Z M 2007 J. Appl. Phys. 101 064106

    [23]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G, Malandrino G, Fragalà I L, Armelao L, Barreca D, Tondello E 2008 J. Electrochem. Soc. 155 44

    [24]

    Pan T M, Shu W H, Hong J L 2007 Appl. Phys. Lett. 90 222906

  • [1] 熊家骋, 黄哲群, 张恒, 王启祥, 崔可航. 热光伏器件中的光谱调控.  , 2024, 73(14): 144402. doi: 10.7498/aps.73.20240629
    [2] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正.  , 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [4] 张翱, 张春秀, 陈云琳, 张春梅, 孟涛. 反式卤素钙钛矿太阳能电池光伏性能的理论研究.  , 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [5] 耿俊娴, 李少强, 王诗琪, 黄春, 吕云杰, 胡睿, 屈军乐, 刘丽炜. 近红外光刺激神经细胞钙离子光激活.  , 2020, 69(15): 158701. doi: 10.7498/aps.69.20200489
    [6] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构.  , 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [7] 肖标, 张敏莉, 王洪波, 刘继延. 基于窄带隙聚合物的高性能可见-近红外光伏探测器.  , 2017, 66(22): 228501. doi: 10.7498/aps.66.228501
    [8] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用.  , 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [9] 梁钊铭, 吴永刚, 夏子奂, 周建, 秦雪飞. 前后光栅周期对于双光栅结构薄膜太阳能电池光俘获效应的影响.  , 2014, 63(19): 198801. doi: 10.7498/aps.63.198801
    [10] 刘俊岩, 秦雷, 宋鹏, 龚金龙, 王扬, A. Mandelis. 硅太阳能电池的调制载流子红外辐射动态响应与参数分析.  , 2014, 63(22): 227801. doi: 10.7498/aps.63.227801
    [11] 耿俊杰, 张军, 张俊, 张义, 丁建军, 孙松, 罗震林, 鲍骏, 高琛. 叠层荧光集光太阳能光伏器件的性能模拟和优化.  , 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [12] 刘丽莎, 吕树臣, 孙江亭. Er3+/Yb3+共掺TeO2-WO3-Bi2O3玻璃的光谱性质和上转换发光.  , 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [13] 陈晓波, 杨国建, 张春林, 李永良, 廖红波, 张蕴芝, 陈鸾, 王亚非. Er0.3Gd0.7VO4晶体红外量子剪裁效应及其在太阳能电池应用上的研究.  , 2010, 59(11): 8191-8199. doi: 10.7498/aps.59.8191
    [14] 杨思华, 阴广志. 利用近红外光激发的光声血管造影成像.  , 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [15] 谭 娜, 段淑卿, 张庆瑜. 退火温度对Er/Yb共掺Al2O3薄膜的光致荧光光谱的影响.  , 2005, 54(9): 4433-4438. doi: 10.7498/aps.54.4433
    [16] 张雄, 谢光中, 赵刚, 马力, 伊继东, 白金明. γ噪Blazar天体的γ射线和近红外光辐射研究.  , 2001, 50(2): 354-360. doi: 10.7498/aps.50.354
    [17] 孟祥建, 程建功, 杨平雄, 叶红娟, 褚君浩. 不同退火方式得到的PbTiO3薄膜的红外光谱研究.  , 2000, 49(2): 371-374. doi: 10.7498/aps.49.371
    [18] 毛念新, 黄叶肖, 陆卫, 叶红娟, 沈学础, 胡志宏, 罗安湘. 天然FeS2(黄铁矿)的红外光谱研究.  , 1993, 42(10): 1712-1718. doi: 10.7498/aps.42.1712
    [19] 叶红娟, 俞志毅, 陆卫, 季华美, 陈建湘, 李光远, 蔡培新, 顾为芳. TixY1-xBa2Cu3O7-δ超导体的红外、远红外光谱.  , 1989, 38(4): 586-592. doi: 10.7498/aps.38.586
    [20] 郑健生. 可见光到近红外光谱范围内微小辐射物理量的测量.  , 1980, 29(3): 286-295. doi: 10.7498/aps.29.286
计量
  • 文章访问数:  5502
  • PDF下载量:  349
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 修回日期:  2017-09-08
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map