-
激光驱动飞片技术具有产生的飞片速度高、成本低、装置简单等传统动高压加载技术无法取代的优点.随着激光技术的发展,利用高功率激光脉冲发射高速飞片受到越来越多的关注.本文介绍了在神光III原型装置上开展的激光驱动高速飞片实验研究.利用纳秒短脉冲和纳秒整形长脉冲,设计并开展了几种不同方式加速飞片的实验研究,成功获得了10 kms-1的固态铝飞片和50 kms-1超高速度的复合金属飞片,而且飞片具有良好的平面性和完整性.对实验的物理设计、技术途径和数据结果进行了比较全面的分析,为进一步开展激光驱动高速飞片相关实验研究提供了思路,同时也证明了神光III原型装置在激光驱动高速飞片实验研究方面有着巨大的潜力.Laser-driven flyers have unique advantages of high flyer velocity, low cost, simple facility compared with the flyers driven by other conventional dynamic high-pressure loading techniques. With the fast development of laser technique, launching hypervelocity flyers with high-intensity laser pulse has become more and more prevalent. In this paper, we introduce the recent experiments of laser-driven flyers at the SG-III prototype laser facility. Three ways of launching hypervelocity flyers are developed and introduced, respectively. In the first way, multilayered aluminum flyers are gradually accelerated to a terminal velocity of 8 km/s, which is measured by optical velocimetry, without melting and vaporization. The pressure distribution within the flyer shows that the temporally ramped pulse ablation generates a compression wave, and the flyer is accelerated by this wave and its reverberation within the flyer. In the second way, a strong laser ablates the low-density reservoir foil and generates strong shock in the foil. The shock wave is strong enough, and when the shock breaks out from the free surface, the foil will unload as plasma towards the flyer with a density profile. The plasma decelerates upon colliding the flyer, and the single-layered flyer is gradually accelerated by the momentum transition. In our experiments, single-layered aluminum foil and single-layered tantalum foil are accelerated to 11.5 km/s and 6.5 km/s, respectively. According to the pressure distribution within the flyer, the flyer is also accelerated by the compression wave produced by the plasma collision, which is similar to the case of direct ablation by temporally ramped pulse. However, the way of plasma collision could better reduce X-ray and electron preheat and obtain cleaner flyers. In the last way, the flyers are launched by direct strong short-laser ablation. The multi-layered aluminum foil is accelerated to a high average velocity of 21.3 km/s by using a 3-ns quadrate laser pulse at 351 nm after spatial homogenization. A line-velocity interferometer system for any reflect (VISAR) is employed to monitor the processes of flyer launch and flight in a vacuum gap and the shock velocity associated with phase change in fused silica target after flyer impact is inferred. The reflectivity variations of the VISAR fringe pattern and the shock velocity in the fused silica suggest that the flyer owns a density gradient characteristic. Furthermore, specifically designed multi-layered flyers (polyimide/copper) are accelerated by shock impedance and reverberation techniques to a super high averaged velocity of 55 km/s, which is much faster than recently reported results. Light-emission signals of shock breakout and flyer impact on flat or stepped windows are obtained, which indicates the good planarity and integrity for the flyer. Compared with single-layer flyers, multi-layered flyers have a good planarity, and a high energy conversion efficiency from laser to flyers. In this paper, we give a comprehensive analysis and comparison of the experimental designs, technique means and data results about laser-driven flyers. This would provide a reference for further experimental study of laser-driven flyers and also verify that the SG-III prototype laser facility is a very promising facility for studying the hypervelocity flyers launching field.
-
Keywords:
- shock wave /
- laser-driven flyers /
- dynamic high-pressure physics /
- plasma
[1] Wu L Z, Shen R Q, Xu J, Ye Y H, Hu Y 2010 Acta Armamentar II 31 219 (in Chinese) [吴立志, 沈瑞琪, 徐姣, 叶迎华, 胡艳 2010 兵工学报 31 219]
[2] Cauble R, Phillion D W, Hoover T J, Holmes N C, Kilkenny J D, Lee R W 1993 Phys. Rev. Lett. 70 2102
[3] Jones A H, Isbell W M, Maiden C J 1966 J. Appl. Phys. 37 3493
[4] Glushak B L, Zhakov A P, Zhernokletov M V, Ternovoi V Y, Filimonov A S, Fortov V E 1989 Sov. Phys. JETP 69 739
[5] Stilp A J 1987 Int. J. Impact Eng. 5 613
[6] Chhabildas L C, Dunn J E, Reinhart W D, Miller J M 1993 J. Impact Eng. 14 121
[7] Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J 1972 J. Appl. Phys. 43 2734
[8] Swift D C, Niemczura J G, Paisley D L, Johnson R P, Luo S N, Tierney IV T E 2005 Rev. Sci. Instrum. 76 093907
[9] Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902
[10] Gu Z W, Sun C W, Luo L J 2002 Infrared Laser Eng. 31 428 (in Chinese) [谷卓伟, 孙承纬, 罗利军 2002 红外与激光工程 31 428]
[11] Paisley D L, Montoya N I, Stahl D B 1990 19th International Congress on High-Speed Photography and Photonics Cambridge, United Kingdom, September 16-21, 1990 p760
[12] Niu J C, Gong Z Z, Cao Y, Dai F, Yang J Y, Li Y 2014 Explosive and Shock Waves 34 129 (in Chinese) [牛锦超, 龚自正, 曹燕, 代福, 杨继运, 李宇 2014 爆炸与冲击 34 129]
[13] Barker L M, Hollenback R E 1972 J. Appl. Phys. 43 4669
[14] Xue Q X, Wang Z B, Jiang S E, Wang F, Ye X S, Liu J R 2014 Phys. Plasmas 21 072709
[15] Jing F Q 1999 Guide of Experimental Equation of State p204 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第204页]
[16] Hayes D B, Hall C A, Asay J R, Knudson M D 2003 J. Appl. Phys. 94 2331
[17] Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002
[18] Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204 (in Chinese) [单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 61 135204]
[19] Shui M, Chu G B, Zhu B, He W H, Xi T, Fan W, Xin J T, Gu Y Q 2016 J. Appl. Phys. 119 035903
[20] Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504
[21] Prisbrey S T, Park H S, Remington B A, Cavallo R, May M, Pollaine S M, Rudd R, Maddox B, Comley A, Fried L, Blobaum K, Wallace R, Wilson M, Swift D, Satcher J, Kalantar D, Perry T, Giraldez E, Farrell M, Nikroo A 2012 Phys. Plasmas 19 056311
[22] Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330
[23] Ozaki N, Koenig M, Benuzzi-Mounaix A, Vinci T, Ravasio A, Esposito M, Lepape S, Henry E, Hser G, Tanaka K A, Nazarov W, Nagai K, Yoshida M 2006 J. Phys. IV France 133 1101
[24] Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Gu Y Q 2015 Chin. Phys. B 24 094701
[25] Okada K, Wakabayashi K, Takenaka H, Nagao H, Kondo K, Ono T, Takamatsu K, Ozaki N, Nagai K, Nakai M, Tanaka K A, Yoshida M 2003 Int. J. Impact Eng. 29 497
[26] Kadonoa T, Yoshida M, Takahashi E, Matsushima I, Owadano Y, Ozaki N, Fujita K, Nakano M, Tanaka K A, Takenaka H, Kondo K 2000 J. Appl. Phys. 88 2943
[27] Tanaka K A, Hara M, Ozaki N, Sasatani Y, Anisimov S I, Kondo K, Nakanoa M, Nishihara K, Takenaka H, Yoshida M, Mima K 2000 Phys. Plasmas 7 676
[28] Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka K A, Fujimoto F, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M, Takenaka H 2001 J. Appl. Phys. 89 2571
[29] Brown K E, Shaw W L, Zheng X X, Dlottb D D 2012 Rev. Sci. Instrum. 83 103901
-
[1] Wu L Z, Shen R Q, Xu J, Ye Y H, Hu Y 2010 Acta Armamentar II 31 219 (in Chinese) [吴立志, 沈瑞琪, 徐姣, 叶迎华, 胡艳 2010 兵工学报 31 219]
[2] Cauble R, Phillion D W, Hoover T J, Holmes N C, Kilkenny J D, Lee R W 1993 Phys. Rev. Lett. 70 2102
[3] Jones A H, Isbell W M, Maiden C J 1966 J. Appl. Phys. 37 3493
[4] Glushak B L, Zhakov A P, Zhernokletov M V, Ternovoi V Y, Filimonov A S, Fortov V E 1989 Sov. Phys. JETP 69 739
[5] Stilp A J 1987 Int. J. Impact Eng. 5 613
[6] Chhabildas L C, Dunn J E, Reinhart W D, Miller J M 1993 J. Impact Eng. 14 121
[7] Hawke R S, Duerre D E, Huebel J G, Klapper H, Steinberg D J 1972 J. Appl. Phys. 43 2734
[8] Swift D C, Niemczura J G, Paisley D L, Johnson R P, Luo S N, Tierney IV T E 2005 Rev. Sci. Instrum. 76 093907
[9] Paisley D L, Luo S N, Greenfield S R, Koskelo A C 2008 Rev. Sci. Instrum. 79 023902
[10] Gu Z W, Sun C W, Luo L J 2002 Infrared Laser Eng. 31 428 (in Chinese) [谷卓伟, 孙承纬, 罗利军 2002 红外与激光工程 31 428]
[11] Paisley D L, Montoya N I, Stahl D B 1990 19th International Congress on High-Speed Photography and Photonics Cambridge, United Kingdom, September 16-21, 1990 p760
[12] Niu J C, Gong Z Z, Cao Y, Dai F, Yang J Y, Li Y 2014 Explosive and Shock Waves 34 129 (in Chinese) [牛锦超, 龚自正, 曹燕, 代福, 杨继运, 李宇 2014 爆炸与冲击 34 129]
[13] Barker L M, Hollenback R E 1972 J. Appl. Phys. 43 4669
[14] Xue Q X, Wang Z B, Jiang S E, Wang F, Ye X S, Liu J R 2014 Phys. Plasmas 21 072709
[15] Jing F Q 1999 Guide of Experimental Equation of State p204 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第204页]
[16] Hayes D B, Hall C A, Asay J R, Knudson M D 2003 J. Appl. Phys. 94 2331
[17] Edwards J, Lorenz K T, Remington B A, Pollaine S, Colvin J, Braun D, Lasinski B F, Reisman D, McNaney J M, Greenough J A, Wallace R, Louis H, Kalantar D 2004 Phys. Rev. Lett. 92 075002
[18] Shan L Q, Gao Y L, Xin J T, Wang F, Peng X S, Xu T, Zhou W M, Zhao Z Q, Cao L F, Wu Y C, Zhu B, Liu H J, Liu D X, Shui M, He Y L, Zhan X Y, Gu Y Q 2012 Acta Phys. Sin. 61 135204 (in Chinese) [单连强, 高宇林, 辛建婷, 王峰, 彭晓世, 徐涛, 周维民, 赵宗清, 曹磊峰, 吴玉迟, 朱斌, 刘红杰, 刘东晓, 税敏, 何颖玲, 詹夏宇, 谷渝秋 2012 61 135204]
[19] Shui M, Chu G B, Zhu B, He W H, Xi T, Fan W, Xin J T, Gu Y Q 2016 J. Appl. Phys. 119 035903
[20] Fratanduono D E, Smith R F, Boehly T R, Eggert J H, Braun D G, Collins G W 2012 Rev. Sci. Instrum. 83 073504
[21] Prisbrey S T, Park H S, Remington B A, Cavallo R, May M, Pollaine S M, Rudd R, Maddox B, Comley A, Fried L, Blobaum K, Wallace R, Wilson M, Swift D, Satcher J, Kalantar D, Perry T, Giraldez E, Farrell M, Nikroo A 2012 Phys. Plasmas 19 056311
[22] Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330
[23] Ozaki N, Koenig M, Benuzzi-Mounaix A, Vinci T, Ravasio A, Esposito M, Lepape S, Henry E, Hser G, Tanaka K A, Nazarov W, Nagai K, Yoshida M 2006 J. Phys. IV France 133 1101
[24] Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Gu Y Q 2015 Chin. Phys. B 24 094701
[25] Okada K, Wakabayashi K, Takenaka H, Nagao H, Kondo K, Ono T, Takamatsu K, Ozaki N, Nagai K, Nakai M, Tanaka K A, Yoshida M 2003 Int. J. Impact Eng. 29 497
[26] Kadonoa T, Yoshida M, Takahashi E, Matsushima I, Owadano Y, Ozaki N, Fujita K, Nakano M, Tanaka K A, Takenaka H, Kondo K 2000 J. Appl. Phys. 88 2943
[27] Tanaka K A, Hara M, Ozaki N, Sasatani Y, Anisimov S I, Kondo K, Nakanoa M, Nishihara K, Takenaka H, Yoshida M, Mima K 2000 Phys. Plasmas 7 676
[28] Ozaki N, Sasatani Y, Kishida K, Nakano M, Miyanaga M, Nagai K, Nishihara K, Norimatsu T, Tanaka K A, Fujimoto F, Wakabayashi K, Hattori S, Tange T, Kondo K, Yoshida M, Kozu N, Ishiguchi M, Takenaka H 2001 J. Appl. Phys. 89 2571
[29] Brown K E, Shaw W L, Zheng X X, Dlottb D D 2012 Rev. Sci. Instrum. 83 103901
计量
- 文章访问数: 7545
- PDF下载量: 332
- 被引次数: 0