搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究

高东宝 刘选俊 田章福 周泽民 曾新吾 韩开锋

引用本文:
Citation:

一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究

高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋

A broadband low-frequency sound insulation structure based on two-dimensionally inbuilt Helmholtz resonator

Gao Dong-Bao, Liu Xuan-Jun, Tian Zhang-Fu, Zhou Ze-Min, Zeng Xin-Wu, Han Kai-Feng
PDF
导出引用
  • 基于圆周排列的Helmholtz共振腔单元,设计并实现了一种具有低频宽禁带的声人工结构,可以在结构中心处实现二维隔声效果.针对实际模型,搭建了二维声场测量平台,进行了相应的实验研究,实验结果与有限元仿真结果符合较好.该结构在较宽的频带内(680–1050 Hz)可以实现较好的隔声效果,最大隔声量可达41 dB.实验中还研究了单元参数及共振状态对隔声效果的影响.隔声区的大小与共振单元的分布形式有直接关系,而良好的共振状态将对提高隔声量有一定帮助.研究结果对设计新型声防护结构具有理论与应用价值.
    Helmholtz resonator(HR) has already been demonstrated both theoretically and experimentally to be a metamaterial with negative mass density and negative bulk modulus simultaneously. The HR can resonate at a frequency corresponding to a wavelength much longer than its geometrical parameters. At this time, the incident acoustic energy can be located. Therefore, the HR structures are considered to be good choices for controlling low-frequency sound waves. Furthermore, existing results indicate that the wide forbidden band could be formed by a one-dimensional structure shunted with detuned HRs. Based on these aforementioned theories, a man-made acoustical structure with broadband low-frequency sound insulation effect is designed by circularly inbuilt HRs. Beyond this structure's surface, a two-dimensional quiet zone can be created. With the same simulated model, an experimental structure is fabricated based on PVC plastic material. The structure consists of five layerd circular plates. In the top four plates, two kinds of holes are drilled. The smaller holes in the top plate act as shot necks of the HR, while the bigger holes in the middle three plates serve as the cavities of the HR. They can construct 60 resonators with different resonant frequencies. Experiments are carried out to study its sound insulation properties. In the experiments, three kinds of HRs with resonant frequencies 785, 840 and 890 Hz from inner loop to outer loop, respectively, are formed. The experimental results are very coincident with the simulation results from the software of COMSOL Multiphysics based on finite element method, which shows that this structure has an excellent sound insulation effect in a frequency band of 680-1050 Hz, and the maximum insulation sound pressure level can reach 41 dB. Meanwhile, the distribution of the two-dimensional sound field is measured. The results point out that the range of the insulation area can be changed with the incident frequency. In addition, the sound insulation effect is sensitive to the resonant state of the HRs. When all of the resonators at the same loop resonate simultaneously, the insulation sound pressure level will be higher. On the contrary, the insulation sound pressure level will be lower because of the energy leaking through the positions where the HRs do not resonate with the others. This work will be of help for designing new sound protection devices for low-frequency sound waves.
      通信作者: 高东宝, gaodongbao@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504425,41374005)资助的课题.
      Corresponding author: Gao Dong-Bao, gaodongbao@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 11504425, 41374005).
    [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [3]

    Zhu R, Liu X N, Hu G K, Sun C T, Huang G L 2014 Nat. Commun. 5 5510

    [4]

    Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301

    [5]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301

    [6]

    Kan W W, Garcia-Chocano V M, Cervera F, Liang B, Zou X Y, Yin L L, Cheng J C, Sanchez-Dehesa J 2015 Phys. Rev. Appl. 3 064019

    [7]

    Wu L Y, Chen L W, Liu C M 2009 Appl. Phys. Lett. 95 013506

    [8]

    Norris A N, Wickham G 1993 J. Acoust. Soc. Am. 93 617

    [9]

    Sugimoto N, Horioka T 1995 J. Acoust. Soc. Am. 97 1446

    [10]

    Hu X H, Chan C T 2005 Phys. Rev. E 71 055601

    [11]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452

    [12]

    Cheng Y, Xu J Y, Liu X 2008 J. Phys. Rev. B 77 045134

    [13]

    Ding C L, Zhao X P 2009 Acta Phys. Sin. 58 6351 (in Chinese)[丁昌林, 赵晓鹏2009 58 6351]

    [14]

    Gao D B, Zeng X W, Zhou Z M, Tian Z F 2013 Acta Phys. Sin. 62 094304 (in Chinese)[高东宝, 曾新吾, 周泽民, 田章福2013 62 094304]

    [15]

    Gao D B, Zeng X W, Zhou Z M, Tian Z F 2014 Proceedings of the 21th Inter. Congress on Sound and Vib. Beijing, China, July 13-17, 2014 p2679

    [16]

    Cheng Y, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 051913

    [17]

    Cheng Y, Liu X J 2012 Appl. Phys. A 109 805

    [18]

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302 (in Chinese)[刘娇, 侯志林, 傅秀军2015 64 154302]

    [19]

    Fey J, Robertson M 2011 J. Appl. Phys. 109 114903

    [20]

    Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Acoustics(Nanjing:Nanjing University Press) pp279-283(in Chinese)[杜功焕, 朱哲民, 龚秀芬2001声学基础(南京:南京大学出版社)第279–283页]

    [21]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015

    [22]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731

    [23]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

  • [1]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022

    [2]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734

    [3]

    Zhu R, Liu X N, Hu G K, Sun C T, Huang G L 2014 Nat. Commun. 5 5510

    [4]

    Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301

    [5]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301

    [6]

    Kan W W, Garcia-Chocano V M, Cervera F, Liang B, Zou X Y, Yin L L, Cheng J C, Sanchez-Dehesa J 2015 Phys. Rev. Appl. 3 064019

    [7]

    Wu L Y, Chen L W, Liu C M 2009 Appl. Phys. Lett. 95 013506

    [8]

    Norris A N, Wickham G 1993 J. Acoust. Soc. Am. 93 617

    [9]

    Sugimoto N, Horioka T 1995 J. Acoust. Soc. Am. 97 1446

    [10]

    Hu X H, Chan C T 2005 Phys. Rev. E 71 055601

    [11]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452

    [12]

    Cheng Y, Xu J Y, Liu X 2008 J. Phys. Rev. B 77 045134

    [13]

    Ding C L, Zhao X P 2009 Acta Phys. Sin. 58 6351 (in Chinese)[丁昌林, 赵晓鹏2009 58 6351]

    [14]

    Gao D B, Zeng X W, Zhou Z M, Tian Z F 2013 Acta Phys. Sin. 62 094304 (in Chinese)[高东宝, 曾新吾, 周泽民, 田章福2013 62 094304]

    [15]

    Gao D B, Zeng X W, Zhou Z M, Tian Z F 2014 Proceedings of the 21th Inter. Congress on Sound and Vib. Beijing, China, July 13-17, 2014 p2679

    [16]

    Cheng Y, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 051913

    [17]

    Cheng Y, Liu X J 2012 Appl. Phys. A 109 805

    [18]

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302 (in Chinese)[刘娇, 侯志林, 傅秀军2015 64 154302]

    [19]

    Fey J, Robertson M 2011 J. Appl. Phys. 109 114903

    [20]

    Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Acoustics(Nanjing:Nanjing University Press) pp279-283(in Chinese)[杜功焕, 朱哲民, 龚秀芬2001声学基础(南京:南京大学出版社)第279–283页]

    [21]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015

    [22]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731

    [23]

    Zhu X F, Ramezani H, Shi C Z, Zhu J, Zhang X 2014 Phys. Rev. X 4 031042

  • [1] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控.  , 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [2] 胥强荣, 朱洋, 林康, 沈承, 卢天健. 一种具有动态磁负刚度薄膜声学超材料的低频隔声特性.  , 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [3] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性.  , 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [4] 周彦玲, 王斌, 范军. 水中微小波纹圆柱体声散射低频共振调控.  , 2021, 70(5): 054301. doi: 10.7498/aps.70.20201535
    [5] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为.  , 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [6] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析.  , 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [7] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能.  , 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [8] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. 薄膜与Helmholtz腔耦合结构低频带隙.  , 2019, 68(21): 214208. doi: 10.7498/aps.68.20190673
    [9] 吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿. 一种多频局域共振型声子晶体板的低频带隙与减振特性.  , 2016, 65(6): 064602. doi: 10.7498/aps.65.064602
    [10] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波.  , 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [11] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究.  , 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [12] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究.  , 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [13] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响.  , 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [14] 成泰民. 有限温度下二维Heisenberg铁磁系统的声子衰减.  , 2007, 56(2): 1066-1074. doi: 10.7498/aps.56.1066
    [15] 成泰民, 鲜于泽, 冮铁臣. 光频支声子对二维Heisenberg铁磁系统磁激发的影响.  , 2006, 55(6): 2941-2948. doi: 10.7498/aps.55.2941
    [16] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性.  , 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [17] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式.  , 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [18] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用.  , 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [19] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性.  , 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [20] 冯瑀正, 蔡秀兰, 郑大瑞, 刘长海. 轻结构隔声测量的新方法.  , 1978, 27(5): 516-523. doi: 10.7498/aps.27.516
计量
  • 文章访问数:  6563
  • PDF下载量:  304
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-11
  • 修回日期:  2016-09-27
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map