搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型Fibonacci准周期结构一维等离子体光子晶体的全方位带隙特性研究

张娟

引用本文:
Citation:

新型Fibonacci准周期结构一维等离子体光子晶体的全方位带隙特性研究

张娟

Omnidirectional photonic bandgap of the one-dimensional plasma photonic crystal based on a novel Fibonacci quasiperiodic structure

Zhang Juan
PDF
导出引用
  • 以二元Fibonacci准周期结构的一维等离子体光子晶体为对象,在系统研究不同初始序列及周期数的该结构光子晶体带隙特性的基础上,给出了一种新颖的一维等离子体光子晶体结构,用于扩大全方位光子带隙.相比文献中的结构,该结构更简单(层数大大减少,且属于二元结构),全方位光子带隙宽度也更宽.此外,讨论了等离子体材料参数,如等离子厚度、等离子体频率、碰撞频率对该结构全方位带隙的影响,并与文献结构情况进行了对比.研究结果可为新型全方位反射器的设计提供重要的理论指导.
    The binary one-dimensional plasma photonic crystal (1DPPC) based on Fibonacci quasiperiodic structure is studied systematically in this paper. We consider the two simplest cases. In one case, the initial sequences F0 and F1 are both of single layer structure. In another case, one initial sequence (F0 or F1) is of a single layer structure, while the other one (F1 or F0) is of a double layer structure. Thus there are ten different kinds of initial sequences in total. The photonic bandgap characteristics of the 1DPPC with these different initial sequences and numbers of period are analyzed. On these bases, a novel structure of one-dimensional plasma photonic crystal (F3)3 with initial sequence of F0=AP, F1=P and F0=PA, F1=P is proposed in this paper to enlarge the omnidirectional photonic bandgap (OPBG). Compared with previously reported structures in the literature, this structure is simple in configuration with fewer layers and materials, and its OPBG width is wide. The influences of the parameters of the plasma material, such as the thickness, plasma frequency and collision frequency, on the OPBG characteristics of this structure are also discussed. The OPBG width increases with the increase of the thickness and plasma frequency of the plasma layer. Compared with the structures in the literature, the change of OPBG width is the fastest for the proposed structure when the parameters are relatively small. And with the same parameters, the OPBG width for the proposed structure is the widest when the parameters are greater than a certain value. The plasma collision frequency has no effect on the OPBG width for all the structures. But the OPBG width for the proposed structure is the widest when this parameter has the same value. The reason why the proposed structure has an optimal OPBG width is explained by analyzing the dispersion properties of the plasma. The real and imaginary part of the dielectric constant of plasma change with frequency significantly only in the low frequency region. Since the imaginary part of dielectric constant is nearly zero when the frequency is larger than 2 GHz, only the dispersion effect of the real part of dielectric constant needs to be considered in the frequency range we investigate. And its value is much greater than that of conventional medium in the same frequency range. This makes the high-reflectance bands of the 1DPPC broader than those in the case of pure photonic interference phenomena with conventional medium. On the other hand, the corresponding highest proportion of plasma layers in the whole quasiperiodic structure can also be used to explain the broadest band gap of (F3)3. These results can provide important theoretical guidance for designing the novel omnidirectional reflectors.
      通信作者: 张娟, juanzhang@staff.shu.edu.cn
    • 基金项目: 上海市教委科研创新项目(批准号:15ZZ045)和上海市特种光纤与光接入网重点实验室开放课题(批准号:SKLSFO2014-04)资助的课题.
      Corresponding author: Zhang Juan, juanzhang@staff.shu.edu.cn
    • Funds: Project supported by the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 15ZZ045) and the Open Foundation of Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University (Grant No. SKLSFO2014-04).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104

    [4]

    Zhang J, Zhang R J, Wang Y 2015 J. Appl. Phys. 117 213101

    [5]

    Fang Y T, He H Q, Hu J X 2016 IEEE J. Sel. Top. Quantum Electron. 22 293

    [6]

    Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197

    [7]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [8]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [9]

    Fang Y T, Ni Y X, He H Q, Hu J X 2014 Opt. Commun. 320 99

    [10]

    Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 104215

    [11]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104

    [12]

    Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A:Mater. Sci. Process. 68 25

    [13]

    Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104

    [14]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [15]

    Zhang H F, Liu S B, Kong X K, Bian B R, Zhao H C 2012 Opt. Commun. 285 5235

    [16]

    Wu C J, Rao Y N, Han W H 2010 Prog. Electromagn. Res. 100 27

    [17]

    Wang S Q, Yang X B, Liu C Y T 2014 Phys. Lett. A 378 1326

    [18]

    Vardeny Z V, Nahata A, Agrawal A 2013 Nat. Photon. 7 177

    [19]

    Poddubny A N, Ivchenko E L 2010 Physica E 42 1871

    [20]

    Zou J H, Zhang J 2016 Acta Phys. Sin. 65 014214 (in Chinese)[邹俊辉, 张娟2016 65 014214]

    [21]

    Lusk D, Abdulhalim I, Placido F 2001 Opt. Commun. 198 273

    [22]

    Gharaati A, Zare Z 2011 Prog. Electromagn. Res. M 20 81

    [23]

    Zhang H F, Liu S B 2013 Opt. Quant. Electron. 45 925

    [24]

    Zhang H F, Liu S B, Kong X K 2013 Solid State Commun. 174 19

    [25]

    Zhang H F, Zhen J P, He W P 2013 Optik 124 4182

    [26]

    Zhang H F, Liu S B, Kong X K, Bian B R, Dai Y 2012 Phys. Plasmas 19 112102

    [27]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Cambridge:Cambridge University Press) pp54-74

    [28]

    Fink Y, Winn J N, Fan S H, Chen C P, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [29]

    Lee H Y, Yao T 2003 J. Appl. Phys. 93 819

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104

    [4]

    Zhang J, Zhang R J, Wang Y 2015 J. Appl. Phys. 117 213101

    [5]

    Fang Y T, He H Q, Hu J X 2016 IEEE J. Sel. Top. Quantum Electron. 22 293

    [6]

    Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197

    [7]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [8]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopoulos J D, Fink Y 2002 Science 296 510

    [9]

    Fang Y T, Ni Y X, He H Q, Hu J X 2014 Opt. Commun. 320 99

    [10]

    Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 104215

    [11]

    Liu J T, Liu N H, Li J, Li X J, Huang J H 2012 Appl. Phys. Lett. 101 052104

    [12]

    Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A:Mater. Sci. Process. 68 25

    [13]

    Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104

    [14]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [15]

    Zhang H F, Liu S B, Kong X K, Bian B R, Zhao H C 2012 Opt. Commun. 285 5235

    [16]

    Wu C J, Rao Y N, Han W H 2010 Prog. Electromagn. Res. 100 27

    [17]

    Wang S Q, Yang X B, Liu C Y T 2014 Phys. Lett. A 378 1326

    [18]

    Vardeny Z V, Nahata A, Agrawal A 2013 Nat. Photon. 7 177

    [19]

    Poddubny A N, Ivchenko E L 2010 Physica E 42 1871

    [20]

    Zou J H, Zhang J 2016 Acta Phys. Sin. 65 014214 (in Chinese)[邹俊辉, 张娟2016 65 014214]

    [21]

    Lusk D, Abdulhalim I, Placido F 2001 Opt. Commun. 198 273

    [22]

    Gharaati A, Zare Z 2011 Prog. Electromagn. Res. M 20 81

    [23]

    Zhang H F, Liu S B 2013 Opt. Quant. Electron. 45 925

    [24]

    Zhang H F, Liu S B, Kong X K 2013 Solid State Commun. 174 19

    [25]

    Zhang H F, Zhen J P, He W P 2013 Optik 124 4182

    [26]

    Zhang H F, Liu S B, Kong X K, Bian B R, Dai Y 2012 Phys. Plasmas 19 112102

    [27]

    Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Cambridge:Cambridge University Press) pp54-74

    [28]

    Fink Y, Winn J N, Fan S H, Chen C P, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679

    [29]

    Lee H Y, Yao T 2003 J. Appl. Phys. 93 819

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241300
    [2] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器.  , 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [3] 傅涛, 欧阳征标. 等离子体填充金属光子晶体Cherenkov辐射源模拟研究.  , 2016, 65(7): 074208. doi: 10.7498/aps.65.074208
    [4] 邹俊辉, 张娟. 混合准周期异质结构的带隙补偿与展宽.  , 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [5] 傅涛, 杨梓强, 欧阳征标. 等离子体填充金属光子晶体慢波结构色散特性研究.  , 2015, 64(17): 174205. doi: 10.7498/aps.64.174205
    [6] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质.  , 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [7] 杨立峰, 王亚非, 周鹰. 一维压电Fibonacci类准周期声子晶体传输特性.  , 2012, 61(10): 107702. doi: 10.7498/aps.61.107702
    [8] 刘小良, 黄晓梅, 徐慧, 任意. Fibonacci序列的统计属性和电子输运系数.  , 2010, 59(6): 4202-4210. doi: 10.7498/aps.59.4202
    [9] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究.  , 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [10] 马 力, 章海锋, 刘少斌. 非磁化等离子体光子晶体缺陷态的研究.  , 2008, 57(8): 5089-5094. doi: 10.7498/aps.57.5089
    [11] 周仁龙, 陈效双, 曾 勇, 张建标, 陈洪波, 王少伟, 陆 卫, 李宏建, 夏 辉, 王玲玲. 金属光子晶体平板的超强透射及其表面等离子体共振.  , 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [12] 曹永军, 杨 旭. 广义Fibonacci准周期结构声子晶体透射性质的研究.  , 2008, 57(6): 3620-3624. doi: 10.7498/aps.57.3620
    [13] 马小涛, 郑婉华, 任 刚, 樊中朝, 陈良惠. 感应耦合等离子体刻蚀InP/InGaAsP二维光子晶体结构的研究.  , 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [14] 曾 隽, 潘杰勇, 董建文, 汪河洲. 大小周期正方格子复合结构的光子带隙特性.  , 2006, 55(6): 2785-2788. doi: 10.7498/aps.55.2785
    [15] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析.  , 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [16] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究.  , 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [17] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [18] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构.  , 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [19] 何拥军, 苏惠敏, 唐芳琼, 董鹏, 汪河洲. 准完全带隙胶体非晶光子晶体.  , 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
    [20] 茅惠兵, 陆卫, 马朝晖, 张家明, 姜山, 沈学础. GaAs/AlGaAs Fibonacci准周期超晶格带间跃迁的光谱研究.  , 1995, 44(10): 1588-1594. doi: 10.7498/aps.44.1588
计量
  • 文章访问数:  5967
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-23
  • 修回日期:  2016-07-25
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map