搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于用户行为的微博网络信息扩散模型

刘红丽 黄雅丽 罗春海 胡海波

引用本文:
Citation:

基于用户行为的微博网络信息扩散模型

刘红丽, 黄雅丽, 罗春海, 胡海波

Modeling information diffusion on microblog networks based on users' behaviors

Liu Hong-Li, Huang Ya-Li, Luo Chun-Hai, Hu Hai-Bo
PDF
导出引用
  • 利用新浪微博数据对用户行为进行分析,在此基础上构建了基于用户行为的微博网络信息扩散模型SIRUB,同时计算了模型中各用户阅读微博和转发微博的概率. 在微博网络中的实验表明,只有同时考虑阅读和转发概率时模型才能较准确地预测用户的转发行为. SIRUB模型对用户转发行为预测的F-score最高为0.228,高于经典SIR模型和SICR模型,此外该模型对微博扩散范围的预测其误差的均值和标准差也均小于SIR模型和SICR模型.
    Online social networks, such as Facebook, Twitter and YouTube, play a vital role in information sharing and diffusion, and recently many dynamics models on social networks have been proposed to model information diffusion. However most models are theoretical, their parameters do not come from realistic data and their validity and reliability have not been evaluated empirically. In the paper we first analyze the users' behaviors of reading and reposting microblog in Sina Weibo, a Twitter-like website in China, and find that users' number of fans, the average reposted number of users' microblog, the intensity of users' interaction and the similarity between microblog topics and users' topic interests can significantly influence reposting behavior. Then we propose an information diffusion model Susceptible-Infected-Recovered based on Users' Behaviors (SIRUB) on microblog networks, compute the users' probability of reading microblog in the model according to the probability of their logging on microblog in a day, and obtain the reposting probability utilizing the logistic regression which considers 16 possible factors influencing users' reposting behavior. The 16 factors can be divided into three categories: the characteristics of microblog publishers, microblog text features and social relationship characteristics. We utilize the beginning 2/3 microblog data to obtain model parameters and logistic regression coefficients, and the remaining 1/3 data to examine the validity of the model. The experiments on Sina Weibo network show that the model can predict users' reposting behavior accurately only when it considers both reading and reposting probabilities. F-score which considers precision and recall is used to assess prediction effect of the model. The highest F-score for the prediction of SIRUB model on users' reposting behavior is 0.228 which is much larger than those of classical Susceptible-Infected-Recovered (SIR, F-score=0.039) and Susceptible-Infected-Contacted-Recovered (SICR, F-score=0.037) models. The prediction on the spreading scope of microblog for SIR and SICR models is related with users' number of fans while for SIRUB model not. For SIRUB model the mean and standard deviation of the errors of prediction on spreading scope are smaller than those of SIR and SICR models. These results indicate that users' behaviors of reading and reposting microblog should be appropriately taken in account when modeling information diffusion on microblog networks, and that, in general, the prediction performance of the data-driven SIRUB model proposed in the paper is better than those of SIR and SICR models regardless of the prediction of users' reposting behavior or diffusion scope of microblog.
      通信作者: 胡海波, hbhu@ecust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61473119,61104139)和中央高校基本科研业务费专项资金(批准号:WN1524301)资助的课题
      Corresponding author: Hu Hai-Bo, hbhu@ecust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61473119, 61104139), and the Fundamental Research Funds for the Central Universities, China (Grant No. WN1524301).
    [1]

    Xu X K, Hu H B, Zhang L, Wang C J 2015 Computational Communication on Social Networks (Beijing: Higher Education Press) p8 (in Chinese) [许小可, 胡海波, 张伦, 王成军 2015 社交网络上的计算传播学 (北京: 高等教育出版社) 第8 页]

    [2]

    Suh B, Hong L, Pirolli P, Chi E H 2010 IEEE Second International Conference on Social Computing Minneapolis, MN, USA, August 20-22, 2010 p177

    [3]

    Zhang Y, Lu R, Yang Q 2012 J. Chin. Inf. Process. 26 109 (in Chinese) [张旸, 路荣, 杨青 2012 中文信息学报 26 109]

    [4]

    Kwak H, Lee C, Park H, Moon S 2010 Proceedings of the 19th International Conference on World Wide Web Raleigh, NC, USA, April 26-30, 2010 p591

    [5]

    Cao J X, Wu J L, Shi W, Liu B, Zheng X, Luo J Z 2014 Chin. J. Comput. 37 779 (in Chinese) [曹玖新, 吴江林, 石伟, 刘波, 郑啸, 罗军舟 2014 计算机学报 37 779]

    [6]

    Weng J, Lim E P, Jiang J, He Q 2010 Proceedings of the Third ACM International Conference on Web Search and Data Mining New York City, NY, USA, February 3-6, 2010 p261

    [7]

    Liu L, Tang J, Han J, Jiang M, Yang S 2010 Proceedings of the 19th ACM International Conference on Information and Knowledge Management Toronto, ON, Canada, October 26-30, 2010 p199

    [8]

    He X, Cheng S, Chen W, Jiang F 2013 International Conference on Information Society Toronto, ON, Canada, June 24-26, 2013 p130

    [9]

    Yang Z, Guo J, Cai K, Tang J, Li J, Zhang L, Su Z 2010 Proceedings of the 19th ACM International Conference on Information and Knowledge Management Toronto, ON, Canada, October 26-30, 2010 p1633

    [10]

    Romero M D, Meeder B, Kleinberg J 2011 Proceedings of the 20th International Conference on World Wide Web Hyderabad, India, March 28-April 1, 2011 p695

    [11]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese) [王超, 刘骋远, 胡元萍, 刘志宏, 马建峰 2014 63 180501]

    [12]

    Wang J L, Liu F A, Zhu Z F 2015 Acta Phys. Sin. 64 050501 (in Chinese) [王金龙, 刘方爱, 朱振方 2015 64 050501]

    [13]

    Li W, Tang S, Fang W, Guo Q, Zhang X, Zheng Z 2015 Phys. Rev. E 92 042810

    [14]

    Wang X J, Song M, Guo S Z, Yang Z L 2015 Acta Phys. Sin. 64 044502 (in Chinese) [王小娟, 宋梅, 郭世泽, 杨子龙 2015 64 044502]

    [15]

    Xiong F, Liu Y, Zhang Z J, Zhu J, Zhang Y 2012 Phys. Lett. A 376 2103

    [16]

    Prakash B A, Beutel A, Rosenfeld R, Faloutsos C 2012 Proceedings of the 21st International Conference on World Wide Web Lyon, France, April 16-20, 2012 p1037

    [17]

    Liu H, Xie Y, Hu H, Chen Z 2014 Int. J. Mod. Phys. C 25 1440004

    [18]

    Goel S, Anderson A, Hofman J, Watts D J {2016 Manage. Sci. 62 180

    [19]

    Goyal A, Bonchi F, Lakshmanan L V S 2010 Proceedings of the Third ACM International Conference on Web Search and Data Mining New York City, NY, USA, February 3-6, 2010 p241

    [20]

    Peng H K, Zhu J, Piao D, Yan R, Zhang Y 2011 IEEE 11th International Conference on Data Mining Workshops Vancouver, BC, Canada, December 11, 2011 p336

    [21]

    Mao J X, Liu Y Q, Zhang M, Ma S P {2014 Chin. J. Comput. 37 791 (in Chinese) [毛佳昕, 刘奕群, 张敏, 马少平 2014 计算机学报 37 791]

    [22]

    Iribarren J L, Moro E 2011 Phys. Rev. E 84 046116

    [23]

    Golub B, Jackson M O 2010 Proc. Natl. Acad. Sci. USA 107 10833

    [24]

    Iribarren J L, Moro E 2009 Phys. Rev. Lett. 103 038702

    [25]

    Zhao W X, Jiang J, Weng J, He J, Lim E P, Yan H, Li X 2011 Proceedings of the 33rd European Conference on Information Retrieval Research Dublin, Ireland, April 18-21, 2011 p338

  • [1]

    Xu X K, Hu H B, Zhang L, Wang C J 2015 Computational Communication on Social Networks (Beijing: Higher Education Press) p8 (in Chinese) [许小可, 胡海波, 张伦, 王成军 2015 社交网络上的计算传播学 (北京: 高等教育出版社) 第8 页]

    [2]

    Suh B, Hong L, Pirolli P, Chi E H 2010 IEEE Second International Conference on Social Computing Minneapolis, MN, USA, August 20-22, 2010 p177

    [3]

    Zhang Y, Lu R, Yang Q 2012 J. Chin. Inf. Process. 26 109 (in Chinese) [张旸, 路荣, 杨青 2012 中文信息学报 26 109]

    [4]

    Kwak H, Lee C, Park H, Moon S 2010 Proceedings of the 19th International Conference on World Wide Web Raleigh, NC, USA, April 26-30, 2010 p591

    [5]

    Cao J X, Wu J L, Shi W, Liu B, Zheng X, Luo J Z 2014 Chin. J. Comput. 37 779 (in Chinese) [曹玖新, 吴江林, 石伟, 刘波, 郑啸, 罗军舟 2014 计算机学报 37 779]

    [6]

    Weng J, Lim E P, Jiang J, He Q 2010 Proceedings of the Third ACM International Conference on Web Search and Data Mining New York City, NY, USA, February 3-6, 2010 p261

    [7]

    Liu L, Tang J, Han J, Jiang M, Yang S 2010 Proceedings of the 19th ACM International Conference on Information and Knowledge Management Toronto, ON, Canada, October 26-30, 2010 p199

    [8]

    He X, Cheng S, Chen W, Jiang F 2013 International Conference on Information Society Toronto, ON, Canada, June 24-26, 2013 p130

    [9]

    Yang Z, Guo J, Cai K, Tang J, Li J, Zhang L, Su Z 2010 Proceedings of the 19th ACM International Conference on Information and Knowledge Management Toronto, ON, Canada, October 26-30, 2010 p1633

    [10]

    Romero M D, Meeder B, Kleinberg J 2011 Proceedings of the 20th International Conference on World Wide Web Hyderabad, India, March 28-April 1, 2011 p695

    [11]

    Wang C, Liu C Y, Hu Y P, Liu Z H, Ma J F 2014 Acta Phys. Sin. 63 180501 (in Chinese) [王超, 刘骋远, 胡元萍, 刘志宏, 马建峰 2014 63 180501]

    [12]

    Wang J L, Liu F A, Zhu Z F 2015 Acta Phys. Sin. 64 050501 (in Chinese) [王金龙, 刘方爱, 朱振方 2015 64 050501]

    [13]

    Li W, Tang S, Fang W, Guo Q, Zhang X, Zheng Z 2015 Phys. Rev. E 92 042810

    [14]

    Wang X J, Song M, Guo S Z, Yang Z L 2015 Acta Phys. Sin. 64 044502 (in Chinese) [王小娟, 宋梅, 郭世泽, 杨子龙 2015 64 044502]

    [15]

    Xiong F, Liu Y, Zhang Z J, Zhu J, Zhang Y 2012 Phys. Lett. A 376 2103

    [16]

    Prakash B A, Beutel A, Rosenfeld R, Faloutsos C 2012 Proceedings of the 21st International Conference on World Wide Web Lyon, France, April 16-20, 2012 p1037

    [17]

    Liu H, Xie Y, Hu H, Chen Z 2014 Int. J. Mod. Phys. C 25 1440004

    [18]

    Goel S, Anderson A, Hofman J, Watts D J {2016 Manage. Sci. 62 180

    [19]

    Goyal A, Bonchi F, Lakshmanan L V S 2010 Proceedings of the Third ACM International Conference on Web Search and Data Mining New York City, NY, USA, February 3-6, 2010 p241

    [20]

    Peng H K, Zhu J, Piao D, Yan R, Zhang Y 2011 IEEE 11th International Conference on Data Mining Workshops Vancouver, BC, Canada, December 11, 2011 p336

    [21]

    Mao J X, Liu Y Q, Zhang M, Ma S P {2014 Chin. J. Comput. 37 791 (in Chinese) [毛佳昕, 刘奕群, 张敏, 马少平 2014 计算机学报 37 791]

    [22]

    Iribarren J L, Moro E 2011 Phys. Rev. E 84 046116

    [23]

    Golub B, Jackson M O 2010 Proc. Natl. Acad. Sci. USA 107 10833

    [24]

    Iribarren J L, Moro E 2009 Phys. Rev. Lett. 103 038702

    [25]

    Zhao W X, Jiang J, Weng J, He J, Lim E P, Yan H, Li X 2011 Proceedings of the 33rd European Conference on Information Retrieval Research Dublin, Ireland, April 18-21, 2011 p338

  • [1] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法.  , 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [2] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算.  , 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [3] 郭淑慧, 吕欣. 网络直播平台数据挖掘与行为分析综述.  , 2020, 69(8): 088908. doi: 10.7498/aps.69.20191776
    [4] 张海燕, 徐梦云, 张辉, 朱文发, 柴晓冬. 利用扩散场信息的超声兰姆波全聚焦成像.  , 2018, 67(22): 224301. doi: 10.7498/aps.67.20181268
    [5] 杨李, 宋玉蓉, 李因伟. 考虑边聚类与扩散特性的信息传播网络结构优化算法.  , 2018, 67(19): 190502. doi: 10.7498/aps.67.20180395
    [6] 李勇军, 尹超, 于会, 刘尊. 基于最大熵模型的微博传播网络中的链路预测.  , 2016, 65(2): 020501. doi: 10.7498/aps.65.020501
    [7] 王金龙, 刘方爱, 朱振方. 一种基于用户相对权重的在线社交网络信息传播模型.  , 2015, 64(5): 050501. doi: 10.7498/aps.64.050501
    [8] 王小娟, 宋梅, 郭世泽, 杨子龙. 基于有向渗流理论的关联微博转发网络信息传播研究.  , 2015, 64(4): 044502. doi: 10.7498/aps.64.044502
    [9] 刘树新, 季新生, 刘彩霞, 郭虹. 一种信息传播促进网络增长的网络演化模型.  , 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [10] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究.  , 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [11] 黄飞虎, 彭舰, 宁黎苗. 基于信息熵的社交网络观点演化模型.  , 2014, 63(16): 160501. doi: 10.7498/aps.63.160501
    [12] 王文祥, 左冬冬, 封国林. 基于信息分配和扩散理论的东北地区干旱脆弱性特征分析.  , 2014, 63(22): 229201. doi: 10.7498/aps.63.229201
    [13] 吴腾飞, 周昌乐, 王小华, 黄孝喜, 谌志群, 王荣波. 基于平均场理论的微博传播网络模型.  , 2014, 63(24): 240501. doi: 10.7498/aps.63.240501
    [14] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究.  , 2014, 63(20): 208902. doi: 10.7498/aps.63.208902
    [15] 邓勇, 张喧轩, 罗召洋, 许军, 杨孝全, 孟远征, 龚辉, 骆清铭. 融合结构先验信息的稳态扩散光学断层成像重建算法研究.  , 2013, 62(1): 014202. doi: 10.7498/aps.62.014202
    [16] 苑卫国, 刘云, 程军军, 熊菲. 微博双向关注网络节点中心性及传播 影响力的分析.  , 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [17] 张彦超, 刘云, 张海峰, 程辉, 熊菲. 基于在线社交网络的信息传播模型.  , 2011, 60(5): 050501. doi: 10.7498/aps.60.050501
    [18] 马卫东, 王 磊, 李幼平, 水鸿寿, 周明天. 用户需求行为对互联网动力学整体特性的影响.  , 2008, 57(3): 1381-1388. doi: 10.7498/aps.57.1381
    [19] 杨宇光, 温巧燕, 朱甫臣. 一种网络多用户量子认证和密钥分配理论方案.  , 2005, 54(9): 3995-3999. doi: 10.7498/aps.54.3995
    [20] 金进生, 夏阿根, 叶高翔. 带电液体基底表面银原子的凝聚和扩散行为.  , 2002, 51(9): 2144-2149. doi: 10.7498/aps.51.2144
计量
  • 文章访问数:  7064
  • PDF下载量:  720
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-13
  • 修回日期:  2016-05-03
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map