搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应本征正交分解混合模型的跨音速流场分析

罗佳奇 段焰辉 夏振华

引用本文:
Citation:

基于自适应本征正交分解混合模型的跨音速流场分析

罗佳奇, 段焰辉, 夏振华

Transonic flow reconstruction by an adaptive proper orthogonal decomposition hybrid model

Luo Jia-Qi, Duan Yan-Hui, Xia Zhen-Hua
PDF
导出引用
  • 采用非线性模型替代线性回归模型响应本征正交分解(POD)基函数的系数, 并采用自适应抽样方法确定快照集合, 实现了基于自适应POD混合模型的跨音速叶片复杂流动分析及流场拟合. 首先通过比较基于线性回归模型和非线性回归模型的基函数系数响应精度, 验证非线性回归模型的收敛性和精确性; 之后通过与静态抽样方法进行对比, 研究分析自适应抽样技术的优越性; 最后开展基于自适应POD混合模型的全三维跨音速流场分析及流动拟合, 结果表明, 采用自适应POD 混合模型, 不仅能够清晰地识别三维跨音速流场中的敏感流动特征, 还能精确地拟合设计空间内任意状态的流场及出口气动参数.
    A proper orthogonal decomposition (POD) based hybrid surrogate model and the applications to transonic flow reconstructions are presented in the paper. In the implementations, the radial basis function (RBF) model response instead of the least-square linear regression is employed in order to improve the coefficients of POD basis modes; moreover, an adaptive sampling strategy with both the model response error and sample independence taken into account is studied to reduce the sample number, while maintaining sufficient response accuracy. Firstly, the POD-RBF surrogate model is studied and compared with the least-square-based POD through pressure reconstruction studies on the twodimensional blade surface. The results demonstrate that the non-linear model response method significantly improves the coefficients of the basis modes and thus the averaged description error. Meanwhile, the beneficial gains on the convergence performance of the response error versus the number of basis modes are obtained. Then by comparing with the uniform sampling and the resampling strategy with taking only the response error into account, the adaptive sampling method proposed in the paper obtains the best performance on reducing the averaged description error. Finally, the flow characteristics of the flow fields on the suction surface, at the blade tip, in the blade passage of the sampled three-dimensional transonic compressor rotor blades with different spanwise sweeps based on the baseline blade, NASA Rotor 67 are illustrated through the flow basis modes. Compared with the suction flow, the flow at the blade tip contains more intensive flow characteristics including shock, tip-leakage flow and shock-leakage interaction, resulting in a higher averaged description error. Besides, the missed flow fields in the passages of the test blades are reconstructed from the flow basis modes by using the adaptive POD-RBF hybrid model and the corresponding aerodynamic parameters are then predicted. The spanwise distributions of the circumferentially averaged aerodynamic parameters at the blade outlet reconstructed from POD-RBF model are consistent well with the numerical solutions. The results demonstrate that the adaptive POD-RBF hybrid surrogate model is effective and accurate enough for reconstructing the transonic flow. In order to further evaluate the response performance of the adaptive POD-RBF model, statistic analysis is carried out for a group of hybrid models with different sampling strategies and different numbers of samples. Generally, although the number of adaptive samples is much less, the mean value and standard deviation of the adaptive model are close enough to those of the static model with sufficient uniform samples. Besides, the standard deviations of a lot of aerodynamic parameters of interest exhibit significant peaks near the blade tip, further demonstrating that the flow at the blade tip is more intensive in the three-dimensional transonic rotor blade passage.
      通信作者: 罗佳奇, jiaqil@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51206003, 51376009)和中国博士后科学基金(批准号: 2012M510267, 2013T60035)资助的课题.
      Corresponding author: Luo Jia-Qi, jiaqil@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51206003, 51376009) and the China Postdoctoral Science Foundation (Grant Nos. 2012M510267, 2013T60035).
    [1]

    Xie G F, He X H, Tong J J, Zheng Y H 2007 Acta Phys. Sin. 56 3193 (in Chinese) [谢国锋, 何旭洪, 童节娟, 郑艳华 2007 56 3193]

    [2]

    Luo J Q, Liu F 2013 Acta Phys. Sin. 62 190201 (in Chinese) [罗佳奇, 刘锋 2013 62 190201]

    [3]

    Jordan M I, Jacobs R A 1994 Neural Comput. 6 181

    [4]

    Couplet M, Basdevant C, Sagut P 2005 J. Comput. Phys. 207 192

    [5]

    Gao Q, Yi S H, Jiang Z F, He L, Xie W K 2013 Chin. Phys. B 22 014202

    [6]

    Wang W, Guan X L, Jiang N 2014 Chin. Phys. B 23 104703

    [7]

    Sirovich L, Kirby M 1987 J. Opt. Soc. Am. A 4 519

    [8]

    Dowell E, Hall K, Thomas J, Florea R, Heeg J 1999 AIAA Paper 1999 1261

    [9]

    LeGresley P A, Alonso J J 2001 AIAA Paper 2001 0926

    [10]

    Wilcox K, Peraire J 2002 AIAA J. 40 2323

    [11]

    Bui-Thanh T, Damodaran M, Willcox K 2004 AIAA J. 42 1063

    [12]

    Duan Y H, Cai J S, Li Y Z 2012 AIAA J. 50 968

    [13]

    Kato H, Funazaki K I 2014 ASME Paper 2014 27229

    [14]

    Luo J, Duan Y, Tang X, Liu F 2015 ASME Paper 2015 42876

    [15]

    Krige D G 1951 J. Chem. Metal. Min. Soc. S. AFR. 52 119

    [16]

    Ostrowski Z, Bialecki R A, Kassab A J 2008 Inverse Probl. Sci. En. 16 39

    [17]

    Rogers C A, Kassab A J, Divo E A, Ostrowski Z, Bialecki R A 2012 Inverse Probl. Sci. En. 20 749

    [18]

    Qiu Y S, Bai J Q, Hua J 2013 Acta Aeronau. Astronau. Sin. 34 1249 (in Chinese) [邱亚松, 白俊强, 华俊 2013 航空学报 34 1249]

    [19]

    Braconnier T, Ferrier M, Jouhaud J C, Montagnac M, Sagaut P 2011 Comput. Fluids 40 195

    [20]

    Gao S G, Dong H R, Sun X B, Ning B 2015 Chin. Phys. B 24 010501

    [21]

    McKay M D, Beckman R J, Conover W J 2000 Technometrics 42 55

    [22]

    Wang G G 2003 J. Mech. Design 125 210

    [23]

    Thomson Q, Martins J R R A 2011 Eng. Optimiz. 43 615

    [24]

    Sirovich L, Kirby M 1987 Q. Appl. Math. 45 561

    [25]

    Finkel R, Bentley J L 1974 Acta Inform. 4 1

    [26]

    Strazisar A J, Wood J R, Hathaway M D, Suder K L 1989 NASA TP 1989 2879

    [27]

    Denton J D, Xu L 2002 ASME Paper 2002 30327

    [28]

    Luo J, Zhou C, Liu F 2014 J. Turbomach. 136 051005

  • [1]

    Xie G F, He X H, Tong J J, Zheng Y H 2007 Acta Phys. Sin. 56 3193 (in Chinese) [谢国锋, 何旭洪, 童节娟, 郑艳华 2007 56 3193]

    [2]

    Luo J Q, Liu F 2013 Acta Phys. Sin. 62 190201 (in Chinese) [罗佳奇, 刘锋 2013 62 190201]

    [3]

    Jordan M I, Jacobs R A 1994 Neural Comput. 6 181

    [4]

    Couplet M, Basdevant C, Sagut P 2005 J. Comput. Phys. 207 192

    [5]

    Gao Q, Yi S H, Jiang Z F, He L, Xie W K 2013 Chin. Phys. B 22 014202

    [6]

    Wang W, Guan X L, Jiang N 2014 Chin. Phys. B 23 104703

    [7]

    Sirovich L, Kirby M 1987 J. Opt. Soc. Am. A 4 519

    [8]

    Dowell E, Hall K, Thomas J, Florea R, Heeg J 1999 AIAA Paper 1999 1261

    [9]

    LeGresley P A, Alonso J J 2001 AIAA Paper 2001 0926

    [10]

    Wilcox K, Peraire J 2002 AIAA J. 40 2323

    [11]

    Bui-Thanh T, Damodaran M, Willcox K 2004 AIAA J. 42 1063

    [12]

    Duan Y H, Cai J S, Li Y Z 2012 AIAA J. 50 968

    [13]

    Kato H, Funazaki K I 2014 ASME Paper 2014 27229

    [14]

    Luo J, Duan Y, Tang X, Liu F 2015 ASME Paper 2015 42876

    [15]

    Krige D G 1951 J. Chem. Metal. Min. Soc. S. AFR. 52 119

    [16]

    Ostrowski Z, Bialecki R A, Kassab A J 2008 Inverse Probl. Sci. En. 16 39

    [17]

    Rogers C A, Kassab A J, Divo E A, Ostrowski Z, Bialecki R A 2012 Inverse Probl. Sci. En. 20 749

    [18]

    Qiu Y S, Bai J Q, Hua J 2013 Acta Aeronau. Astronau. Sin. 34 1249 (in Chinese) [邱亚松, 白俊强, 华俊 2013 航空学报 34 1249]

    [19]

    Braconnier T, Ferrier M, Jouhaud J C, Montagnac M, Sagaut P 2011 Comput. Fluids 40 195

    [20]

    Gao S G, Dong H R, Sun X B, Ning B 2015 Chin. Phys. B 24 010501

    [21]

    McKay M D, Beckman R J, Conover W J 2000 Technometrics 42 55

    [22]

    Wang G G 2003 J. Mech. Design 125 210

    [23]

    Thomson Q, Martins J R R A 2011 Eng. Optimiz. 43 615

    [24]

    Sirovich L, Kirby M 1987 Q. Appl. Math. 45 561

    [25]

    Finkel R, Bentley J L 1974 Acta Inform. 4 1

    [26]

    Strazisar A J, Wood J R, Hathaway M D, Suder K L 1989 NASA TP 1989 2879

    [27]

    Denton J D, Xu L 2002 ASME Paper 2002 30327

    [28]

    Luo J, Zhou C, Liu F 2014 J. Turbomach. 136 051005

  • [1] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型.  , 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [2] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析.  , 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [3] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型.  , 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [4] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究.  , 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] 段焰辉, 吴文华, 范召林, 罗佳奇. 基于本征正交分解的气动优化设计外形数据挖掘.  , 2017, 66(22): 220203. doi: 10.7498/aps.66.220203
    [6] 王辉, 沙威, 黄志祥, 吴先良, 沈晶. 有耗色散光子晶体带隙结构的本征值分析新方法.  , 2014, 63(18): 184210. doi: 10.7498/aps.63.184210
    [7] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟.  , 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [8] 张翰, 管玉平. 南海夏季风与登陆我国大陆初旋的关系.  , 2012, 61(12): 129201. doi: 10.7498/aps.61.129201
    [9] 胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛. 含有本征SiGe层的SiGe异质结双极晶体管集电结耗尽层宽度模型.  , 2011, 60(1): 017303. doi: 10.7498/aps.60.017303
    [10] 王冠宇, 马建立, 张鹤鸣, 王晓艳, 王斌. [110]/(001)单轴应变Si本征载流子浓度模型.  , 2011, 60(7): 077105. doi: 10.7498/aps.60.077105
    [11] 李立, 张新陆, 崔金辉, 陈历学. Tm3+/Yb3+共掺激光晶体的本征光学双稳特性分析与参数优化.  , 2010, 59(2): 1052-1062. doi: 10.7498/aps.59.1052
    [12] 宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜. 应变Si/(001)S1-xGex本征载流子浓度模型.  , 2010, 59(3): 2064-2067. doi: 10.7498/aps.59.2064
    [13] 曹 洁, 高守亭, 周玉淑. 从流场分解角度改进Q矢量分析方法及其在暴雨动力识别中的应用.  , 2008, 57(4): 2600-2606. doi: 10.7498/aps.57.2600
    [14] 周铁戈, 宋凤斌, 左 涛, 顾 静, 夏侯海, 胡雅婷, 赵新杰, 方 兰, 阎少林. 本征约瑟夫森结阵列的PSpice模型及混沌行为研究.  , 2007, 56(11): 6307-6314. doi: 10.7498/aps.56.6307
    [15] 王继锁, 冯健, 刘堂昆, 詹明生. 算符(f(“非汉字符号”))k正交归一本征态的非经典特性.  , 2002, 51(9): 1983-1988. doi: 10.7498/aps.51.1983
    [16] 冯士德, 张琼, 任荣彩. 用格子Boltzmann模型模拟非等温流场.  , 2001, 50(7): 1207-1212. doi: 10.7498/aps.50.1207
    [17] 李福利, 柴晋临, 张智明. 构造光子数湮没算子高次幂的正交本征态的新方法.  , 1993, 42(7): 1058-1064. doi: 10.7498/aps.42.1058
    [18] 时维春, 常健斌, 韩士杰. 构造αN的各正交本征态的方法.  , 1993, 42(3): 400-406. doi: 10.7498/aps.42.400
    [19] 李福利;柴晋临;张智明. 构造光子数湮没算子高次幂的正交本征态的新方法.  , 1991, 40(7): 1058-1064. doi: 10.7498/aps.40.1058
    [20] 周玉魁, 云国宏. 最一般的超矩阵量子非线性Schr?dinger模型的本征态研究.  , 1989, 38(4): 648-652. doi: 10.7498/aps.38.648
计量
  • 文章访问数:  6295
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-06
  • 修回日期:  2016-02-26
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map